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PREFACE

Wigner’s quasi-probability distribution function in phase space is a special (Weyl-
Wigner) representation of the density matrix. It has been useful in describing transport in
quantum optics; nuclear physics; and quantum computing, decoherence, and chaos. It is
also of importance in signal processing and the mathematics of algebraic deformation. A re-
markable aspect of its internal logic, pioneered by Groenewold and Moyal, has only emerged
in the last quarter century. It furnishes a third, alternative, formulation of quantum me-
chanics, independent of the conventional Hilbert space, or path integral formulations.

In this logically complete and self-standing formulation, one need not choose sides be-
tween coordinate and momentum space. It works in full phase-space, accommodating the
uncertainty principle, and it offers unique insights into the classical limit of quantum the-
ory. The variables (observables) in this formulation are c-number functions in phase space
instead of operators, with the same interpretation as their classical counterparts, but are
composed together in novel algebraic ways.

This volume is a selection of 23 useful papers in the phase-space formulation, with an
introductory overview which provides a trail-map to these papers and an extensive bibliog-
raphy. (Still, the bibliography makes no pretense to exhaustiveness. An up-to-date database
on the large literature of the field, with special emphasis on its mathematical and techni-
cal aspects, may be found at http://idefix.physik.uni-freiburg.de/~star/en/download.html)
The overview collects often-used formulas and simple illustrations, suitable for applications
to a broad range of physics problems, as well as teaching. It provides supplementary mate-
rial that may be used for a beginning graduate course in quantum mechanics. D. Morrissey
is thanked for the helpful comments and Prof Curtright would also like to express his thanks
to Ms Diaz-Heimer.

Errata and other updates to the book may be found on-line at
http://server.physics.miami.edu/~curtright/QMPS

C. K. Zachos, D. B. Fairlie, and T. L. Curtright
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OVERVIEW OF PHASE-SPACE QUANTIZATION
1 Introduction

There are at least three logically autonomous alternative paths to quantization. The first is
the standard one utilizing operators in Hilbert space, developed by Heisenberg, Schrédinger,
Dirac, and others in the 1920s. The second one relies on path integrals, and was conceived
by Dirac [Dir33] and constructed by Feynman.

The third one (the bronze medal!) is the phase-space formulation, based on Wigner’s
(1932) quasi-distribution function [Wig32] and Weyl’s (1927) correspondence [Wey27] be-
tween quantum-mechanical operators in Hilbert space and ordinary c-number functions in
phase space. The crucial composition structure of these functions, which relies on the *-
product, was fully understood by Groenewold (1946) [Gro46], who, together with Moyal
(1949) [Moy49], pulled the entire formulation together. Still, insights into interpretation
and a full appreciation of its conceptual autonomy took some time to mature with the work
of, among others, Takabayasi [Tak54], Baker [Bak58], and Fairlie [Fai64].

This complete formulation is based on the Wigner function (WF), which is a quasi-
probability distribution function in phase space:

fz,p) = % /dy P* (I - gy) e~ WPy (m + gy> (1)

It is a generating function for all spatial autocorrelation functions of a given quantum-
mechanical wave function 1(z). More important, it is a special representation of the density
matrix (in the Weyl correspondence, as detailed in Section 12). Alternatively, in a 2n-
dimensional phase space, it amounts to

1 n Y _ Y\ py/h
e = o [ e+ Y ole= ) o, o
where ¥(z) = (z|¢) in the density operator p,
- m n . Jn E ip-z/h — E
p—/d z/dmdp)a:+2>f(:v,p)e <a: 2!. (3)

There are several outstanding reviews on the subject: Refs. HOS84, Tak89, Ber80, BJ84,
Lit86, deA98, Tat83, Coh95, KNO1, Kub64, DeG74, KW90, Ber77, Lee95, Dah01, Sch02,
DHS00, CZ83, Gad95, HHO02, Str57, McD88, Leo97, Sny80, Bal63, BFF78.

Nevertheless, the central conceit of the present overview is that the above input wave
functions may ultimately be bypassed, since the WFs are determined, in principle, as the
solutions to suitable functional equations in phase space. Connections to the Hilbert space
operator formulation of quantum mechanics may thus be ignored, in principle—even though
they are provided in Section 12 for pedagogy and confirmation of the formulation’s equiva-
lence. One might then envision an imaginary world in which this formulation of quantum
mechanics had preceded the conventional Hilbert-space formulation, and its own techniques
and methods had arisen independently, perhaps out of generalizations of classical mechanics
and statistical mechanics.



It is not only wave functions that are missing in this formulation. Beyond the ubig-
uitous (noncommutative, associative, pseudodifferential) operation, the x-product, which
encodes the entire quantum-mechanical action, there are no linear operators. Expectations
of observables and transition amplitudes are phase-space integrals of c-number functions,
weighted by the WF', as in statistical mechanics. Consequently, even though the WF is not
positive-semidefinite (it can be, and usually is negative in parts of phase space [Wig32]), the
computation of expectations and the associated concepts are evocative of classical probabil-
ity theory. Still, telltale features of quantum mechanics are reflected in the noncommutative
multiplication of such c-number phase-space functions through the x-product, in systematic
analogy to operator multiplication in Hilbert space.

This formulation of quantum mechanics is useful in describing quantum transport pro-
cesses in phase space. Such processes are of importance in quantum optics [Sch02, Leo97,
SMO00], nuclear and particle physics [Bak60, SP81, MM84, CC03, BJY04], condensed mat-
ter [MMP94, DBB02, KKFR89, BP96, KL01, JBM03], the study of semiclassical limits
of mesoscopic systems [Imr67, OR57, Sch69, Ber77, KW87, OM95, MS95, MOT98, Vo89,
Vo78], and the transition to classical statistical mechanics [JD99, Fre87, BD98, Raj83,
CV98, SM00, FZ01, Zal03].

It is the natural language to study quantum chaos and decoherence [JN90, ZP94, BC99,
KZ7702, KJ99, Zu91, FBA96, Kol96, GH93, CL03, OCO03] (of utility in, e.g. quantum com-
puting [BHPO02]), and provides crucial intuition in quantum mechanical interference prob-
lems [Wis97], probability flows as negative probability backflows [BM94, FMSO00], and mea-
surements of atomic systems [Smi93, Dun95, Lei96, KPM97, Lvo01, JS02, BHS02, Ber02,
Cas91].

The intriguing mathematical structure of the formulation is of relevance to Lie Algebras
[FFZ89], martingales in turbulence [Fan03}, and string field theory [BKMO3]. It has recently
been retrofitted into M-theory advances linked to noncommutative geometry [SW99] (for
reviews, see Refs. Cas00, Har01, DNO1, HS02), and matrix models [Tay01, KS02]; these ap-
ply space-time uncertainty principles [Pei33, Yo89, JY98, SSTO00] reliant on the x-product.
(Transverse spatial dimensions act formally as momenta, and, analogously to quantum me-
chanics, their uncertainty is increased or decreased inversely to the uncertainty of a given
direction.)

As a significant aside, the WF has extensive practical applications in signal processing,
filtering, and engineering (time-frequency analysis) , since time and frequency constitute a
pair of Fourier-conjugate variables just like the ¢ and p pair of phase space.?

For simplicity, the formulation will be mostly illustrated for one coordinate and its
conjugate momentum, but generalization to arbitrary-sized phase spaces is straightforward
[DMS86], including infinite-dimensional ones, namely scalar field theory [Dit90, Les84, Na97,
CZ99, CPP01, MM94]: the respective WF's are simple products of single-particle WF's.

2Thus, time-varying signals are best represented in a WF' as time-varying spectrograms, analogously to a music score ,
i.e. the changing distribution of frequencies is monitored in time [BBL80, Wok97, QC96, MH97, Coh95, Gro01]: even
though the description is constrained and redundant, it gives an intuitive picture of the signal that a mere time profile
or frequency spectrogram fails to convey. Applications abound [CGB91, Lou96, MH97] in bioengineering, acoustics,
speech analysis, vision processing, turbulence microstructure analysis, radar imaging, seismic data analysis, and the
monitoring of internal combustion engine-knocking, failing helicopter component vibrations, and so on.



2 The Wigner Function

As already indicated, the quasi-probability measure in phase space is the WF,

flz,p) = 517; / dy (a: - gy) e WPy (x + gy> (4)

It is obviously normalized; [dpdzf(z,p) = 1. In the classical limit, & — 0, it would
reduce to the probability density in coordinate space z, usually highly localized, multiplied
by d-functions in momentum: the classical limit is “spiky” and certain! This expression
has more =z — p symmetry than is apparent, as Fourier transformation to momentum-space
wave-functions yields a completely symmetric expression with the roles of  and p reversed,
and, upon rescaling of the arguments z and p, a symmetric classical limit.

The WF is also manifestly real.® In addition, it is constrained by the Schwarz inequality
to be bounded, ~% < flz,p) < % Again, this bound disappears in the spiky classical limit.

Respectively, p- or z-projection leads to marginal probability densities: a spacelike
shadow, [dp f(z,p) = p(z), or else a momentum-space shadow, [ dzf(z,p) = o(p). Either
is a bona-fide probability density, being positive-semidefinite. But neither can be condi-
tioned on the other, as the uncertainty principle is fighting back: The WF f(z,p) itself can,
and most often is negative in some areas of phase space [Wig32, HOS84], as is illustrated
below, a hallmark of QM interference in this language. (In fact, the only pure state WF
which is non-negative is the Gaussian [Hud74], a state of maximum entropy [Raj83].)

The counter-intuitive “negative probability” aspects of this quasi-probability distribu-
tion have been explored and interpreted [Bar45, Fey87, BM94] (for a popular review, see
LPM98), and negative probability flows amount to legitimate probability backflows in in-
teresting settings [BM94]. Nevertheless, the WEF for atomic systems can still be measured
in the laboratory, albeit indirectly [Smi93, Dun95, Lei96, KPM97, Lvo01, BAD96, BHS02,
Ber02, BRWK99], and reconstructed.

Smoothing f by a filter of size larger than % (e.g. convolving with a phase-space Gaus-
sian) results in a positive-semidefinite function, i.e. it may be thought to have been coarsened
to a classical® distribution [Car76, Ste80, OW81, Raj83].

Among real functions, the WF's constitute a rather small, highly constrained set. When
is a real function f(z,p) a bona-fide Wigner function of the form (4)? Evidently, when its

PIn one space dimension, by virtue of nondegeneracy, ¥ has the same effect as 1*, and f turns out to be p-even, but
this is not a property used here.

€This one is called the Husimi distribution [Tak89, TA99], and sometimes information scientists examine it on account
of its non-negative feature. Nevertheless, it comes with a heavy price, as it needs to be “dressed” back to the
WF for all practical purposes when expectation values are computed with it, i.e. it does not serve as an immediate
quasi-probability distribution with no further measure (see Section 13). The negative feature of the WF is, in
the last analysis, an asset, not a liability, and provides an efficient description of “beats” [BBL80, Wok97, QC96,
MH97, Coh95]; cf. Fig. 1. If, instead, strictly inequivalent (improper) expectation values were taken with the Husimi
distribution without the requisite dressing of Section 13, i.e. as though it were a bona-fide probability distribution, such
expectation values would reflect loss of quantum information: they would represent classically coarsened observables
[WO087].



X

Figure 1. Wigner function of a pair of Gaussian wavepackets centered at = = *a: f(z,p;a) = exp[—(a? +
p?))(exp(—a?) cosh(2az) + cos(2pa)]/m(1 + e~4"). (The corresponding wave-function is ¥(z; a) = exp[—(z + a)?/2] +
exp[—(z — a)2/2]/n"/4\/2 4 2e=9%.) Here, a = 6 is chosen, quite larger than the width of the Gaussians. Note the
phase-space interference structure (“beats”) with negative values in the = region between the two packets where there
is no wave-function support—hence vanishing probability for the presence of the particle. The oscillation frequency
in the p direction is a/w.

Fourier transform (the cross-spectral density) “left-right” factorizes,

fen) = [doems@n =i (2~ ) on(e+7) - ©)
That is,
0% In f B
3~ D) O+ f2) o

so, for real f, gr, = gg-
Nevertheless, as indicated, the WF is a distribution function, after all: it provides
the integration measure in phase space to yield expectation values from phase-space

4



c-number functions. Such functions are often classical quantities but, in general, are
uniquely associated with suitably ordered operators through Weyl’s correspondence rule
[Wey27]. Given an operator ordered in this prescription,

B(x,p) = (217)2 [ drdodsdp g(s, ) explir(p - p) +io(s ~ )] ()

the corresponding phase-space function g(z, p) (the “Weyl kernel function of the operator”)
is obtained by

pop rez. (8)

That operator’s expectation value is then a “phase-space average” [Gro46, Moy49],

(®) = / dwdp f(z,p) 9(z,p). (9)

The kernel function g(z, p) is often the unmodified classical observable expression, such
as a conventional Hamiltonian, H = p2/2m + V(z), i.e. the transition from classical me-
chanics is straightforward. However, it contains A corrections when there are quantum-
mechanical ordering ambiguities, such as in the observable kernel of the square of the
angular momentum £ - £: This contains a term, —3k2 /2, introduced by the Weyl order-
ing [She59, DS82, DS02], beyond the mere classical expression (L?), and accounts for the
nontrivial angular momentum of the ground-state Bohr orbit. In such cases (including
momentum-dependent potentials), even nontrivial O(k) quantum corrections in the kernel
functions (which characterize different operator orderings) can be produced efficiently with-
out direct, cumbersome consideration of operators [CZ02, Hie84]. More detailed discussion
of the Weyl and alternate correspondences is provided in Sections 12 and 13.

In this sense, expectation values of the physical observables specified by kernel functions
g(z,p) are computed through integration with the WF, in close analogy with classical
probability theory, except for the non-positive-definiteness of the distribution function. This
operation corresponds to tracing an operator with the density matrix (cf. Section 12).

3 Solving for the Wigner Function

Given a specification of observables, the next step is to find the relevant WF for a given
Hamiltonian. Can this be done without solving for the Schrodinger wave functions v, i.e.
not using Schridinger’s equation directly? Indeed, the functional equations which f satisfies
completely determine it.

Firstly, its dynamical evolution is specified by Moyal’s equation. This is the extension
of Liouville’s theorem of classical mechanics, for a classical Hamiltonian H{z,p), namely
o:f +{f, H} = 0, to quantum mechanics, in this language [Wig32, Moy49):

of _Hxf—f*H

~ IS =gy (10)



where the x-product [Gro46] is
s = ¢ 2(820p=0p0a) (11)

The right-hand side of (10) is dubbed the “Moyal Bracket” (MB), and the quantum
commutator is its Weyl correspondent. It is the essentially unique one-parameter (%) asso-
ciative deformation of the Poisson brackets of classical mechanics [Vey75, BFF78, FLS76,
Ar83, Fle90, deW83, BCG97, TD97]. Expansion in A around 0 reveals that it consists of
the Poisson bracket corrected by terms O(h).

The equation (10) also evokes Heisenberg’s equation of motion for operators, except that
H and f here are classical functions, and it is the x-product which enforces noncommuta-
tivity. This language makes the link between quantum commutators and Poisson brackets
more transparent.

Since the *-product involves exponentials of derivative operators, it may be evaluated
in practice through translation of function arguments (“Bopp shifts”),

th — th —

f(z,p)*g(z,p) = f (w +5 Op P 81) g(z, p). (12)
The equivalent Fourier representation of the x-product is [Neu31, Bak58|
Fx9= 533 [ dddds’ £@8) o(a", )
X exp (%21 p(z' —2")+p' (" —z) +p'(z — x')]) . (13)

An alternate integral representation of this product is [HOS84]

9
fxg= (im)“2 /dp’dp"da:'dz" flz+z',p+p) glz+2",p+p") exp [-hz (as'p" — a:"p’)] , (14)

which readily displays noncommutativity and associativity.
* multiplication of c-number phase-space functions is in complete isomorphism to
Hilbert-space operator multiplication [Gro46],

Az, p) B(r,p) = (—2711_—)5 /deadmdp (axb) explir(p — p) +io(x — z)]. (15)

The cyclic phase-space trace is directly seen in the representation (14) to reduce to a plain
product, if there is only one x involved:

/dpdm f*g=/dpdac fgz/dpdx gxf. (16)

Moyal’s equation is necessary, but does not suffice to specify the WF for a system. In
the conventional formulation of quantum mechanics, systematic solution of time-dependent
equations is usually predicated on the spectrum of stationary ones. Time-independent pure-
state Wigner functions x-commute with H, but clearly not every function x-commuting with
H can be a bona-fide WF (e.g. any * function of H will x-commute with H).

6



Static WFs obey more powerful functional x-genvalue equations [Fai64] (also see

Refs. Kun67, Coh76, Dah83):

R fo.0) = H (o+5 8, . p= 5 82) fap
= f(z,p) xH(z,p) = E f(z,p) , (17)

where F is the energy eigenvalue of $1 = E1). These amount to a complete characterization
of the WFs [CFZ98].

Lemma 1 For real functions f(z,p), the Wigner form (4) for pure static eigenstates is
equivalent to compliance with the x-genvalue equations (17) (® and & parts).

Proof
H(z,p) x f(z,p)
_ 1! By’ ~iy(p+i8 Ba) gy _ 1 h
= o |01 Bu2m + V()| [y w8y - L) et )
_ 1 h PR h —iyp, [ * _rf h
— o [ |35 8o om+ Vet )| e - By wia+ B)
1 ; - h — R h h
- —iyp . -0 2 w * _ e o
= [as e (65, 45 Gt om + Ve + )| 6o - ) vl + )
1 _igpxg. D h
= 5 [dv e — 30) B p(a+ 50)
=E f(z,p). (18)
Action of the effective differential operators on 1¢* turns out to be null.
Symmetrically,
frxH

" or
=F f(CL',p), (19)

where the action on ¢ is now trivial. B
Conversely, the pair of x-eigenvalue equations dictate, for f(z,p) = [dy e %P f(z,y) ,

[y e [—5%(574 5 vty - E] F,u) =o. (20)

1 ; 1 - h= h h h
[ e | =58y =5 5% + Ve = )| wrle — 5 wle + 5)

Hence, real solutions of (17) must be of the form f = [dy e~ ¥Py*(z — By)p(z + By)/2r,
such that $Hy = Eqp. O

Equation (17) lead to spectral properties for WFs [Fai64, CFZ98], as in the Hilbert
space formulation. For instance, projective orthogonality of the x genfunctions follows from
associativity, which allows evaluation in two alternate groupings:

fxHxg=Ef fxg=E, fxg. (21)
7



Thus, for E, # Ey, it is necessary that
f*xg=0. (22)

Moreover, precluding degeneracy (which can be treated separately), choosing f = g above
yields

fxHxf=E; fxf=Hxfxf, (23)
and hence f x f must be the stargenfunction in question,
f*fof. (24)

Pure state fs then *-project onto their space. In general, it can be shown [Tak54, CFZ98]
that, for a pure state,

fas fo =7 dap fu (25)

The normalization matters [Tak54]: despite linearity of the equations, it prevents superposi-
tion of solutions. (Quantum mechanical interference works differently here, in comportance
with density matrix formalism.)

By virtue of (16), for different x-genfunctions, the above dictates that

/ dpdz fg=0. (26)

Consequently, unless there is zero overlap for all such WFs, at least one of the two must
go negative someplace to offset the positive overlap [HOS84, Coh95]—an illustration of the
feature of negative values. This feature is an asset and not a liability.

Further, note that integrating (17) yields the expectation of the energy,

/H(w,p)f(w,p) drdp = E/f drdp = E. (27)
Likewise,? note that integrating the above projective condition yields
g 1
dzdp f* = '}; ) (28)

i.e. the overlap increases to a divergent result in the classical limit, as the WFs grow in-
creasingly spiky.

dThis discussion applies to proper WFs, corresponding to pure states’ density matrices. E.g. a sum of two WFs
is not a pure state in general, and does not satisfy the condition (6). For such generalizations, the impurity is
(Grod6] 1 — &(f) = [dxdp (f — hf?) > 0, where the inequality is only saturated into an equality for a pure state.
For instance, for w = (fa + fo)/2 with fo * f5 = 0, the impurity is nonvanishing, [ dzdp (w ~ hw?) = 1/2. A pure
state affords a maximum of information, while the impurity is a measure of lack of information [Fan57, Tak54]—it is
the dominant term in the expansion of the quantum entropy around a pure state [Brag4].

8



4 The Uncertainty Principle

In classical (non-negative) probability distribution theory, expectation values of non-
negative functions are likewise non-negative, and thus result in standard constraint in-
equalities for the constituent pieces of such functions, e.g., moments of the variables. But
it was just seen that for WFs which go negative for an arbitrary function g, {|g|%) need not
be > 0. This can be easily seen by choosing the support of g to lie mostly in those regions
of phase-space where the WF f is negative.

Still, such constraints are not lost for WFs. It turns out they are replaced by:

Lemma 2
(g"xg) > 0. (29)

In Hilbert space operator formalism, this relation would correspond to the positivity of the
norm. This expression is non-negative because it involves a real non-negative integrand for
a pure state WF satisfying the above projective condition®,

/ dpdz(g*xg)f = h / dudp(g*+g)(f*]) = h / dwdp(fxg*)(gxf) = h / dzdplgxfI2. (30)

O
To produce Heisenberg’s uncertainty relation [CZ01], one only needs to choose

g = a+ bz + cp, (31)

for arbitrary complex coefficients a, b, c. The resulting positive semi-definite quadratic form
is then

a*a+b"b{zxz)+c*c(pxp)+ (a*b+b*a){z) + (a*c+c*a)(p) + c*b(pxz) + b c(zxp) > 0, (32)

for any a, b, c. The eigenvalues of the corresponding matrix are then non-negative, and thus
so must be its determinant. Given

5 )
zxz =1,  pxp=p’, p*m=pw—%—, r*p=pm+%, (33)
and the usual
(Az)? = ((z - (z))?), (Ap)? = ((p— (p)?), (34)
this condition on the 3 x 3 matrix determinant amounts to
2 2 h? 2
(A)? (ap)? = =+ (@~ @) - @) (35)
and hence
Az Ap > g . (36)

Similarly, if f1 and f2 are pure state WFs, the transition probability (| fdz} (z)12(z)|?) between the respective states
is also non-negative [OW81], manifestly by the same argument [CZ01], namely Jdpdzfifa = (27h)? [ dzdp | f1% f212 >
0.
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The % entered into the moments’ constraint through the action of the % product ([CZo1].
More general choices of g likewise lead to diverse expectations’ inequalities in phase space;
e.g. in six-dimensional phase space, the uncertainty for g = a +bL, +cLy, requires I(l +1) >
m(m + 1), and hence I > m, etc. [CZ01, CZ02]. For a more extensive formal discussion of
moments, cf. Ref. NO&6.

5 Ehrenfest’s Theorem
Moyal’s equation (10),
of
—t- = 'KH > f B ) (37)

serves to prove Ehrenfest’s theorem for expectation values. For any phase-space function
k(z,p) with no explicit time dependence,

d(k) _ of
Tl /d:vdp Ek

=i—1ﬁ/dxdp(H*f—f*H)*k

_ / dedp f{k, HY = ({k, HY). (38)

(Any convective time-dependence, [dxdp [, (fk) + p d,(fk)], amounts to an ignorable
surface term, [dzdp [0,(¢fk) + 8,(pfk)], by the z,p equations of motion.)
Note the ostensible sign difference between the correspondent to Heisenberg’s equation,

dk
i ={k,H} , (39)
and Moyal’s equation above. The z,p equations of motion reduce to the classical ones of
Hamilton, ¢ = 0,H, p= -0, H.
Moyal [Moy49] stressed that his eponymous quantum evolution equation (10) contrasts
to Liouville’s theorem for classical phase-space densities,
%=6£l+¢amfd+papfd=o. (40)
Specifically, unlike its classical counterpart, in general, f does not flow like an incompressible
fluid in phase space.
For an arbitrary region {2 about a representative point in phase space,

dt/da:dpf /da:dp[ + 8, (&f) + Fp( pf] /dwdp(ﬁHf}} {H,f})#0. (41)

That is, the phase-space region does not conserve in time the number of points swarming
about the representative point: points diffuse away, in general, without maintaining the
density of the quantum quasi-probability fluid, and, conversely, they are not prevented
from coming together, in contrast to deterministic flow. For infinite 2 encompassing the
entire phase space, both surface terms above vanish to yield a time-invariant normalization

10
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for the WF. The O(%?) higher momentum derivatives of the WF present in the MB (but
absent in the PB—higher space derivatives probing nonlinearity in the potential) modify
the Liouville flow into characteristic quantum configurations [KZZ02, FBA96, ZP94].

6 Illustration: The Harmonic Oscillator

To illustrate the formalism on a simple prototype problem, one may look at the harmonic
oscillator. In the spirit of this picture, one can, in fact, eschew solving the Schrédinger
problem and plugging the wave functions into (4); instead, one may solve (17) directly for
H=(p*+2%)/2 (withm =1, w=1):

(.’L‘ + %8,,)2 + (p - 22@61)2 —2F f(l‘,p) = 0. (42)

For this Hamiltonian, the equation has collapsed to two simple PDEs. The first one, the
Imaginary part,

(#9p — pds)f =0, (43)

restricts f to depend on only one variable, the scalar in phase space, z = 4H/h = 2(z? +
p?)/h. Thus the second one, the Real part, is a simple ODE,

Z_,2-p L _
(4 20; — 0, h> f(z)=0. (44)
Setting f(z) = exp(—2z/2)L(z) yields Laguerre’s equation,
[zag +(1-2)8, + % - %] L(z)=0. (45)
It is solved by Laguerre polynomials,
L. = 1 zZ Gufe=z,n 6
n — ;!6 z (6 z ) 3 (4 )

forn=FE/h—-1/2=0,1,2,..., so the ¥ gen—-Wigner functions are [Gro46]

_ (=D omys 4\
fn“" ———7'('77, € Ln ) )

4H 8H? 8H

Ly=1 L1=1-— =— - —+1,....
0 3 1 B L2 B2 A + 1, (47)
But for the Gaussian ground state, they all have zeros and go negative. These functions
become spiky in the classical limit 2z — 0; e.g. the ground state Gaussian fg goes to a ¢

function.

11
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X p

Figure 2. The oscillator WF for the third excited state. Note the negative values.

Their sum provides a resolution of the identity [Moy49],

1
Zﬂ:fu=’£ . (48)

(For the rest of this section, set i = 1, for algebraic simplicity.)

Dirac’s Hamiltonian factorization method for the alternate algebraic solution of the same
problem carries through intact, with *multiplication supplanting operator multiplication.
That is to say,

1 . 1
H=§(z—z’p)*(m+%p)+§. (49)
This motivates definition of raising and lowering functions (not operators)
4/ %(z +4); ot = %(m ¥, (50)
where
axal —atxa=1. (51)
The annihilation ones %-annihilate the » Fock vacuum:
ax fo= %tm +ip) ke~ @) =0, (52)

Thus, the associativity of the ~-product permits the customary ladder spectrum gener-
ation [CFZ98]. The x-genstates for H * f = f x H are

o= (@™ fo (va)" 53)

They are manifestly real, like the Gaussian ground state, and left-right-symmetric; it is
easy to see they are x-orthogonal for different eigenvalues. Likewise, they can be seen by

12
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o

\

X
Figure 3. Section of the WF for the first excited state. Note the negative values.

the evident algebraic normal ordering to project to themselves, since the Gaussian ground
state does, fo* fo = fo/h. The corresponding coherent state WFs [KL01, CUZ01, Har01,
DG80] are likewise analogous to the conventional formulation.

This type of analysis carries over well to a broader class of problems [CFZ98] with “es-
sentially isospectral” pairs of partner potentials, connected with each other through Dar-
boux transformations relying on Witten superpotentials W (cf. the Poschl-Teller potential
[Ant01]). It closely parallels the standard differential operator structure of the recursive
technique. That is, the pairs of related potentials and corresponding x-genstate Wigner
functions are constructed recursively [CFZ98] through ladder operations analogous to the
algebraic method outlined above for the oscillator.

Beyond such recursive potentials, examples of further simple systems where the »
genvalue equations can be solved on first principles are the linear potential [GM80, CFZ98,
TZMO96], the exponential interaction Liouville potentials, and their supersymmetric Morse
generalizations [CFZ98]. (Also see Refs. Fra00, CH86, HL99, KL94.)

Further systems may be handled through the Chebyshev-polynomial numerical tech-
niques of Ref. HMS98.

First-principles phase-space solution of the hydrogen atom is less than straightforward
and complete. The reader is referred to Refs. BFF78, Bon84, DS82, CH87 for significant
partial results.

Algebraic methods of generating spectra of quantum-integrable models are described in
Ref. CZ02.

7 Time Evolution

Moyal’s equation (10) is formally solved by virtue of associative combinatoric operations
completely analogous to Hilbert space quantum mechanics, through definition of a x-unitary

13
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evolution operator, a “x-exponential” [BFF78]

i it /)2 it/h)3
Uy(z,p;t) = eHHM =1 4 (it/R)H (z,p) + gzé—fi)H*H-}- (@ é' ) HxHxH+ ..., (54)
for arbitrary Hamiltonians. The solution to Moyal’s equation, given the WF at ¢t = 0, then,

15

f(z,pit) = UMz, p3t) % f(z,p;0) x Us(z, ps 1) (55)

In general, just like any x-function of H, the x-exponential (54) resolves spectrally
[Bon84]:

1t it it .
exp, (%H) = exp, (%H) *1 = exp, (%H) *QWBZ fn= QWhZ etEn/hy (56)

(Of course, for t = 0, the obvious identity resolution is recovered.) In turn, any particular
*-genfunction is projected out formally by

/ dt exp, [%(H _ Em)] = 272 Y 6(En — En) fa & fm s (57)

which is manifestly seen to be a x-function.
For oscillator *-genfunctions, the x-exponential (56) is directly seen to sum to

exp, (%) - [cos(%)] " xp [%Htan(g)] , (58)

which is to say, a Gaussian [BFF78] in phase space.”
For the variables z and p, the evolution equations collapse to mere classical trajectories,

dr xzxH-Hxx
=T g H =y, (59)
dp pxH-Hxp
dt ih
where the concluding member of these two equations hold for the oscillator only. Thus, for
the oscillator,

=—0,H=—z, (60)

z(t) = zcost + psint, p(t) = pcost — xsint. (61)

As a consequence, for the oscillator, the functional form of the Wigner function is
preserved along classical phase-space trajectories [Gro46):

f(z,p;t) = f(zcost — psint,pcost + xsint;0). (62)

fAs an application, note that the celebrated hyperbolic tangent *-composition law of Gaussians follows trivially, since
these amount to x-exponentials with additive time intervals, exp, (tf) « exp, (T f) = exp,[(t + T)f)], [BFF78]. That
is,

a+b

a b
exp [—’—i($2 + PQ)] * exp {—E(EQ + P2)] = ﬁ exp [—m(mQ +P2)] :

14
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(A

X

Figure 4. Time evolution of generic WF configurations driven by an oscillator Hamiltonian. The t-arrow indicates the
rotation sense of z and p, and so, for fixed = and p axes, the WF shoebox configurations rotate rigidly in the opposite
direction, clockwise. (The sharp angles of the WF's in the illustration are actually unphysical, and were only chosen
to monitor their “spreading wavepacket” projections more conspicuously.) These z- and p-projections (shadows) are
meant to be intensity profiles on those axes, but are expanded on the plane to aid visualization. The circular figure
represents a coherent state, which projects on either axis identically at all times, thus without shape alteration of its
wavepacket through time evolution.

Any oscillator WF configuration rotates uniformly on the phase plane around the origin,
in essence classically (cf. Fig. 4), even though it provides a complete quantum-mechanical
description [Gro46, BM49, Wig32, Les84, CZ99, ZC99].

Naturally, this rigid rotation in phase-space preserves areas, and thus automatically
illustrates the uncertainty principle. By contrast, in general, in the conventional formulation
of quantum mechanics, this result is deprived of intuitive import, or, at the very least,
simplicity: upon integration in = (or p) to yield usual marginal probability densities, the
rotation induces apparent complicated shape variations of the oscillating probability density
profile, such as wavepacket spreading (as evident in the shadow projections on the z and p
axes of Fig. 4).

Only when (as is the case for coherent states [HSD95, Sam00)] a Wigner function
configuration has an additional axial  — p symmetry around its own center, will it possess
an invariant profile upon this rotation, and hence a shape-invariant oscillating probability
density [ZC99].
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In Dirac’s interaction representation, a more complicated interaction Hamiltonian su-
perposed on the oscillator one leads to shape changes of the WF configurations placed on
the above “turntable,” and serves to generalize to scalar field theory [CZ99)].

8 Nondiagonal Wigner Functions

More generally, to represent all operators on phase space in a selected basis, one looks
at the Weyl-correspondents of arbitrary |a) (b|, referred to as nondiagonal WFs [Gro46].
These enable investigation of interference phenomena and the transition amplitudes in the
formulation of quantum-mechanical perturbation theory [BM49, WO88, CUZ01].

Both the diagonal and the non-diagonal WF's are represented in (2), by replacing p

- |¢a><"/)b|
. I
fea(z,p) = 51; /dy e VP <w +3Y wa> <¢b T — g—y>

= o [avemims (o= o) v (o4 5v) = Faten)
= ya(z) % 6(p) # 95 ) (63

The representation on the last line is due to Ref. Brad4 and lends itself to a more compact
and elegant proof of Lemma 1. Just as pure-state diagonal WFs obey a projection condition,
so too the non-diagonals. For wave functions which are orthonormal for discrete state labels,
[ dz i (x)s(x) = dap, the transition amplitude collapses to

/ dzdp fup (2,p) = bap (64)

To perform spectral operations analogous to those of Hilbert space, it is useful to note that
these WF's are x-orthogonal [Fai64],

(27rh) fba * fdc = 6bcfda 3 (65)
as well as complete [Moy49] for integrable functions on phase space,
@278) 3 fas (z1,P1) fra (2,2) = 6 (z1 — 2) 8 (p1 —p2) - (66)

a,b

For example, for the SHO in one dimension, non-diagonal WFs are

Fin = ﬁ (a**)n fo (*a)lc, fo= %e—(z2+p2)/ﬁ (67)

(cf. coherent states [CUZ01, DG80)]. Explicitly, in terms of associated Laguerre polynomi-
als, these are [Gro46, BM49, Fai64]

Ko (_1)k 22 + p? (n—k)/2 ~ x2+p2) L
_ [N i(n—k) arctan(p/z) n—k (z +p )/h 68
Jen =771 € wh ( B2 Li n2 )¢ (68)
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The SHO nondiagonal WFs are direct solutions to [Fai64]

H % fin = Ep fin , finxH = Ey fin . (69)

The energy -genvalue conditions are (E, — 1) /A = n, an integer, and (Ej; — 3) /A = k,
also an integer.

The general spectral theory of WFs is covered in Refs. BFF78, FM91, Lie90, BDW99,
CUZ01.

9 Stationary Perturbation Theory

Given the spectral properties summarized, the phase-space perturbation formalism is self-
contained: it need not make reference to the Hilbert-space treatment [BM49, WO88, CUZ01,
SS02, MS96).

For a perturbed Hamiltonian,

H (z,p) = Ho(z,p) + A Hi(z,p) , (70)
seek a formal series solution,
o0 o
z,p) = »_ AN f8) (x,p), E,=Y XEP, (71)
k=0 k=0

of the left-right-x-genvalue equations (17), H % f, = E,f, = fax H.
Matching powers of A in the eigenvalue equation [CUZ01],

EO = / dzdp £z, p) Ho(z,p), EY = / dedp fOe,p) Hiz,p),  (72)

O (z, p) Zf,m z,p /dXdeO) (X,P) Hy(X,P)
k#n

+ Z O — o ) (2,P) / dXdP f{9 (X,P) Hy (X,P) . (73)
k;én
For example, consider all polynomial perturbations of the harmonic oscillator in a unified
treatment, by choosing

Hy = et = eyTtor — (e”“’ *€5p> e19/2 — (e‘sf” * e”) e~1/2 (74)

to evaluate a generating function for all the first-order corrections to the energies [CUZ01],

P = 3Bl = [asip 310 ()
n=0 n=0
hence
1 47
H_ - 2 pl®
E, 1 o EY(s) » (76)
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From the spectral resolution (56) and the explicit form of the x-exponential of the
oscillator Hamiltonian (58) [with e® — s and EQ = (n+ 1) #), it follows that

1 z24+p? s—1
[ A 7
nz_%s "~ wh(1 + s) exp( h s+1) ’ (77
and hence
1 z2+p? 1-s
EM (g) = ————/d Yz+8p -
(s) TR T9) xdpe exp - T
1 h 2 2 1 + S
= - ) . 7
Lo () 1 79)
For example, specifically,
E(l) = expg (v* +46%) , E(l) [1 +3 (v* + 52)J EWM
h2

and so on. All the first order corrections to the energies are even functions of the
parameters—only even functions of x and p can contribute to first-order shifts in the oscil-
lator energies.

First-order corrections to the WFs may be similarly calculated using generating func-
tions for nondiagenal WFs. Higher order corrections are straightforward but tedious. De-
generate perturbation theory also has an autonomous formulation in phase-space, equivalent
to Hilbert space and path-integral treatments.

10 Propagators

Time evolution of general WFs beyond the above treatment is discussed at length in
Refs. BM49, Ber75, GM80, CUZ01, BR93, Wo82, Wo02, FM03. A further application
of the spectral techniques outlined is the computation of the WF time-evolution opera-
tor from the propagator for wave functions, which is given as a bilinear sum of energy
eigenfunctions,

Gz, X;t) 2¢ e Batlyz(X) = explidan(z, X;1) (80)

as it may be thought of as an exponentiated effective action. (Henceforth in this section,
take A= 1.)
This leads directly to a similar bilinear double sum for the WF' time-transformation

kernel [Moy49],

T(z,p; X, Pit) =27 Y foa(z,p) e " E=) f0(X, P) . (81)
a,b

18
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Defining a “big star” operation as a x-product for the upper-case (initial) phase-space
variables,

* = e%@(gxgp—gpgx) (82)
it follows that

T(z,p; X, P;t)% fac(X, P) = Z fre(z,p) e Em B £ (X, P) (83)

and hence [cf. (55)],

/ dXdP T(z,p; X, P;t) fac(X, P) = fao(w,p)e™ "B 5" = Uk fue(, p; 0)xUsx = fuc(, p3 ).

(84)

For example, for a free particle of unit mass in one dimension, H = p?/2, WFs propagate
according to

Three (z,p; X, P;t)
= — / dk / dg eik=a)e 5 [ - % (k + q)] (@ =K)1/2 g=ilk—0)X 5 [P - % (k+ q)}
= §(z—X—-Pt)d(p—P), (85)
amounting to “classical” motion,

f(z,p;t) = f(z - pt,p;0) . (86)

11 Canonical Transformations

Canonical transformations (z, p)— [X (z, p), P(z, p)| preserve the phase-space volume (area)
element (again, take i = 1) through a trivial Jacobian,

dXdP = dzdp {X, P} , (87)

i.e. they preserve Poisson brackets

Oudv Oudv
— 88
{u, vhap = oz 8p Op oz’ (88)

{X, P}zp =1, {x>p}XP =L (89)

Upon quantization, the c-number function Hamiltonian transforms “classically,”
H(X, P) = H(z,p), like a scalar. Does the *-product remain invariant under this transfor-
mation?

Yes, for linear canonical transformations [KL01], but clearly not for general canonical
transformations. Still, things can be put right, by devising general covariant transformation
rules for the x-product [CFZ98]: the WF transforms in comportance with Dirac’s quantum
canonical transformation theory [Dir33).
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In conventional quantum mechanics, for classical canonical transformations generated
by Fa(z, X),
p= aFCl(:E, X) p= _3FC1(.’L",X)
Oz ’ 0X ’
the energy eigenfunctions transform in a generalization of the “representation-changing”
Fourier transform [Dir33],

(90)

¥i(z) = Ni / dX e F@X) g p(X) | (91)

(In this expression, the generating function F' may contain A corrections [BCT82] to the
classical one, in general—but for several simple quantum-mechanical systems it manages
not to [CGY2, DGO2].) Hence [CFZ98|, there is a transformation functional for WFs,
7 (z,p; X, P), such that

f(x,p)=/dXdPT($,p;X,P)*.7:(X,P)=/dXdPT(x,p;X,P) F(X,P), (92

where
7T (z,p; X, P) (93)
_ |N|‘°‘/ o e Y Y, . y Y
=0 dYdy exp |—iyp+iPY —iF*(x — E’X - 5) +iF(z + §,X+ E) .
Moreover, it can be shown that [CFZ98],
H(z,p)»T(z,p; X, P) = T(z,p; X, P)k H(X, P). (94)

That is, if F satisfies a J-genvalue equation, then f satisfies a x-genvalue equation with the
same eigenvalue, and vice versa. This proves useful in constructing WFs for simple systems
which can be trivialized classically through canonical transformations.

A thorough discussion of MB automorphisms may start from Ref. BCWO02 . (Also see
Refs. Hie82, DKM88, GR94, DV97, Hak99, K199, DP01.)

Time evolution is a canonical transformation [Dir33], with the generator’s role played
by the effective action A of the previous section, incorporating quantum corrections to both
phases and normalizations; it connects initial wave functions to those at a final time.

For example, for the linear potential, with

H= p2 +x, (95)
wave function evolution is determined by the propagator
1. i(z—X)® i(z+X)t it
Vimit P T 2 12|

exp [iApn(z, X;t)] = (96)

T then evaluates to
Tiin (mavaa P’ t)

1 . . . ] Y . Y Y
R — - — jA¥ - Z —- : z -t
27r/dey exp [ iyp + iPY —iAf,(x 2,X 5 it) + iAnn(z + 2,X+ 5 )
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1 1t ?
= — —7 ] _—— — — —
5% dY dy exp [ iyp + iPY 5 (y+Y)+ 5 (z—X)y-Y)

1 t z-—X t z—-X
=§5(p+§_ 2t )J(P_E’ 2 )

= §(p+t—P)é(z—2tp—t* - X)
=0z—-X-(p+P)t)s(P—-p—1t). (97)

The § functions enforce exactly the classical motion for a mass= 1/2 particle subject to
a negative constant force of unit magnitude (acceleration = —2). Thus the WF evolves
“classically” as

flz,p;t) = f(z — 2pt — 1%, p+ 1 ;0). (98)

Note that time independence follows for f(z,p;0) being any function of the energy variable,
since z + p% = = — 2pt — t? + (p+t)2.
The evolution kernel T' propagates an arbitrary WF through just

f(z,p5t) = / dXdP T(z,p; X, P;¢) f(X, P;0) . (99)

The underlying phase-space structure, however, is more evident if one of the wave-function
propagators is given in coordinate space, and the other in momentum space. Then the
path integral expressions for the two propagators can be combined into a single phase-space
path integral. For every time increment, phase space is integrated over to produce the new
Wigner function from its immediate ancestor. The result is

T (z,p; X, P;t) (100)
=% / daydpy /dedpgeQ“Z‘“)(P‘Pl)e‘””"l (@1; twg; 0) (p1; t[pa; 0)* e"2P2e M X ~o2)(Pp2),

where (z1;¢ |z2;0) and (p1;t |pg;0) are the path integral expressions in coordinate space,
and in momentum space. Blending these x and p path integrals gives a genuine path
integral over phase space [Ber80, DK85]. For a direct connection of U, to this integral, see
Refs. Sha79, Lea68, Sam00.

12 The Weyl Correspondence

This section summarizes the bridge and equivalence of phase-space quantization to the
conventional formulation of quantum mechanics in Hilbert space. The Weyl correspondence
merely provides a change of representation between phase space and Hilbert space. In
itself, it does not map (commutative) classical mechanics to (non-commutative) quantum
mechanics, but it makes that deformation map easier to grasp, defined within a common
representation, and thus more intuitive.

Weyl [Wey27] introduced an association rule mapping invertibly c-number phase-space
functions g(z, p) (called phase-space kernels) to operators & in a given ordering prescription.
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Specifically, p — p, z +— ¢, and, in general,

O, p) = (21)2 / drdodzdp g(z,p) exp ir(p ~ p) + iz — 3)). (101)

The eponymous ordering prescription requires that an arbitrary operator, regarded as a
power series in ¢ and p, be first ordered in a completely symmetrized expression in x and p,
by use of Heisenberg’s commutation relations, [z, p] = k.

A term with m powers of p and n powers of ¢ is obtained from the coefficient of ™o
in the expansion of (7p + or)™*", which serves as a generating function of Weyl-ordered
polynomials [GF91]. It is evident how the map yields a Weyl-ordered operator from a
polynomial phase-space kernel. It includes every possible ordering with multiplicity one,

e.g.
2.2, .2.2 2 2
6pm — p°r® + £2p® + prbr + pr’p + zprp + 1p’r . (102)
In general [McC32],
p ™ — ii P'rpm;n r _ Li m pspnpm—s_ (103)
n r=0 m s=0 8

Phase-space constants map to the identity in Hilbert space.
In this correspondence scheme, then,

Tr$ = /dxdp g. (104)

Conversely [Gro46, Kub64, HOS84], the c-number phase-space kernels g(z, p) of Weyl-
ordered operators &(x,p) are specified by p — p, r — z, or, more precisely, by the “Wigner
map,”

g(.’lbp) = (_27]‘;‘)‘5/de0' ei(T”Jr‘””)T‘r (C‘i(TM—U;)@)

) h
= 1 /dy e Pz + Ey &(x,p)|lz— =y ), ‘ (105)
2w 2 2
since the above trace reduces to
/dz T2 (z|e" e TITPB|2) = 27r/dz(z — hr|®|z)elo(Th/2=2) (106)

Thus, the density matrix inserted in this expression [Moy49] yields the hermitean gen-
eralization of the Wigner function (63) encountered,
h
m — —
2y

fab(z,p) = /dye ’y”<:v+ Y wb> <¢a

h h
2];1_ dye—'typ¢ (:L'_ 5 )¢b(z+ Ey) = f{:a(l',p) ) (107)

where the v,(z)s are (ortho)normalized solutions to a Schrddinger problem. (Wigner
[Wig32] mainly considered the diagonal elements of the pure-state density matrix, denoted
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above as f, = fmm-.) As a consequence, matrix elements of operators, i.e. traces of them
with the density matrix, are produced through mere phase-space integrals [Moy49],

(Bl Blifn) = / e (108)

and thus expectation values follow for m = n, as utilized throughout in this overview.
Hence,

(Ymlexpi(or + 7p)|Ym) = / dzdp fm(z,p)expi(oz +7p), (109)

the celebrated moment-generating functional [Moy49] of the Wigner distribution.

Products of Weyl-ordered operators are not necessarily Weyl-ordered, but may be easily
reordered into Weyl-ordered operators through the degenerate Campbell-Baker—Hausdorff
identity. In a study of the uniqueness of the Schrodinger representation, von Neumann
[Neu31] adumbrated the composition rule of kernel functions in such operator products, ap-
preciating that Weyl’s correspondence was in fact a homomorphism. (Effectively, he arrived
at the Fourier space convolution representation of the star product.) Finally, Groenewold
[Gro46] neatly worked out in detail how the kernel functions f and g of two operators §
and & must compose to yield the kernel of § &,

86 =g / dédndg' dn'dz'dz" dp'dp” f (', p)g(z", p")
x expilé(p — p') +n(x — 2')] expil¢'(p —p") + 7' (x — 2")]
= @)t / d¢dnd¢'d'da'dz"dp'dp” f («', p') g (=", p") eXpi[(E +&)p+(n+ n’)x]
X expi [—Ep’ =’ =£p =nla" + (577 =k )] (110)

Changing integration variables to

! 2 / — 2 / / 2 / 2 /
=z@~-2), §=7-3@-2), n=:0-p), n1=0-30-p) (111)
reduces the above integral to the fundamental

Theorem 1
56 = ﬁﬁ/deadxdp expi[r(p —p)+o(x— x)] (f x9)(z,p), (112)

where f x g is the expression (13).
0
The *-product thus defines the transition from classical to quantum mechanics. In fact,
the failure of Weyl-ordered operators to close under multiplication may be stood on its
head [Bra02], to define a Weyl-symmetrizing operator product which is commutative and
constitutes the Weyl transform of fg instead of the non-commutative f % g. (For example,
20 xp = 2zp + ih — 2rp = tp + pr + ih. The classical piece of 2z x p maps to the Weyl
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symmetrization of the operator product, 2zp — tp + pr.) One may then solve for the PB in
terms of the MB, and, through the Weyl correspondence, reformulate Classical Mechanics
in Hilbert space as a deformation of Quantum Mechanics, instead of the other way around
[Bra02].

Arbitrary operators &(z,p) consisting of operators ¢ and p, in various orderings, but
with the same classical limit, could be imagined rearranged by use of Heisenberg com-
mutations to canonical completely symmetrized Weyl-ordered forms, in general with O(k)
terms generated in the process. Each one might then be inverse-mapped uniquely to its
Weyl-correspondent c-number kernel function g in phase space. [In practice, there is the
more direct Wigner transform formula (105), which bypasses a need for an actual rearrange-
ment.] Thus, operators differing from each other by different orderings of their s and ps
correspond to kernel functions g coinciding with each other at O(%9), but different at O(#),
in general. Hence, in phase-space quantization, a survey of all alternate operator orderings
in a problem with such ambiguities amounts to a survey of the “quantum correction” O(h)
pieces of the respective kernel functions, i.e. the inverse Weyl transforms of those operators,
and their study is systematized and expedited. Choice-of-ordering problems then reduce to
purely x-product algebraic ones, as the resulting preferred orderings are specified through
particular deformations in the c-number kernel expressions resulting from the particular
solution in phase space [CZ02].

13 Alternate Rules of Association

The Weyl correspondence rule (101) is not unique: there are a host of alternate equivalent
association rules which specify corresponding representations. All these representations
with equivalent formalisms are typified by characteristic quasi-distribution functions and
*-products, all inter-convertible among themselves. They have been surveyed comparatively
and organized in Refs. Lee95, BJ84, on the basis of seminal classification work by Cohen
[Coh66, Coh76], and are favored by virtue of their different characteristic properties in
varying applications.

For example, instead of the operator exp(itp + ior) of the Weyl correspondence, one
might posit, instead [Lee95, HOS84], antistandard ordering,

exp(itp) exp(iox) = exp(iTp + iox)w(r, o), (113)

with w = exp(ihro/2), which specifies the Kirkwood-Rihaczek prescription; or else stan-
dard ordering, w = exp(—ihro/2) on the right-hand side of the above, for the Mehta
prescription; or normal and antinormal orderings for the Glauber—Sudarshan prescrip-
tions, generalizing to w = exp[g(r2 + ¢2)] for the Husimi prescription [Hus40, Tak89];
or w = cosh{2(r2 + ¢?)] for the Rivier prescription; or w = sin(hro/2)/(fira/2), for the
Born—Jordan prescription; and so on.

The corresponding quasi-distribution functions in each representation can be obtained
as convolution transforms of each other [Coh76, Lee95, HOS84], and likewise the kernel func-
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tion observables are convolution “dressings” of each other, as are their x-products [Dun88,
AWT0, Ber75|.

Example For instance, the Husimi distribution follows from a “Gaussian smoothing” linear
conversion map [WO87, Tak89, Lee95] of the WF,

fu=T(f) = exp | 02+ )| £ (114)
z - 2 /)2
- %/dm’dp'exp [_( ) ;I(p p) ):| f(@,p),

and likewise for the observables, so that

= /dmdp gH (3}1(5’”5’“"'5”‘_9’1’)/2 fH. (115)

Expectation values of observables now entail equivalence conversion dressings of the respec-
tive kernel functions and a corresponding x-product [Ba79, OW81, Vo89, Tak89, Zac00],
which now cannot be simply dropped inside integrals. For this reason, distributions such
as this Husimi distribution (which is positive-semidefinite [Car76, OW81, Ste80]) cannot be
automatically thought of as bona-fide probability distributions. This is often dramatized as
the failure of the Husimi distribution fz to yield the correct z- or p-marginal probabilities,
upon integration by p.or .z, respectively [OW81, HOS84|. Since phase-space integrals are
thus complicated by conversion dressing convolutions, they preclude direct applications of
the Schwarz inequality and the standard inequality-based moment-constraining techniques
of probability theory, as well-as routine completeness and orthonormality-based functional
analytic operations. (Ignoring the above equivalence dressings and, instead, simply treating
the Hussimi distribution as an ordinary probability distribution in evaluating expectation
values results in loss of quantum information—effectively “coarse-graining” to a classical
limit.)

Similar caveats also apply to more recent symplectic tomographic representations
[MMT96, MMMO1, Leo97], which are positive semi-definite too, but also do not consti-
tute conventional probability distributions.

14 The Groenewold~van Hove Theorem and the Uniqueness of MBs and
*-Products

Groenewold’s correspondence principle theorem [Gro46] (to which van Hove’s extension is
often attached [vH51]) points out that, in general, there is no invertible linear map from all
functions of phase space f(z,p),g(z,p),..., to hermitean operators in Hilbert space Q(f),
£(g), ..., such that the PB structure is preserved,

2(1,0h) = 7 120),2(0) ], (116)
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as utilized in Dirac’s heuristics. Instead, the Weyl correspondence map (101) from functions
to ordered operators,

W(F) = g5z [ drdodedp f(a,p)explir(p - p) + ioe ~ 2], (117)
specifies the x-product in (112), 20(f * g) = 20(f) 20(g), and thus

W f,03) = = [, 2(9)]. (119)
It is the MB, then, instead of the PB, which maps invertibly to the quantum commutator.
That is to say, the “deformation” in phase-space quantization is nontrivial: the quantum
functions, in general, do not coincide with the classical ones [Gro46], and involve O(k)
corrections, as extensively illustrated in, e.g. Refs. CZ02, DS02, CH86; also see Ref. Got99.

An alternate abstract realization of the above MB algebra in phase space (as opposed
to the Hilbert space one), 20(f), is [FFZ89, CFZm98]

R(f)=F~* . (119)

Realized on a toroidal phase space, with a formal identification % +— 27 /N, it leads to the
Lie algebra of SU(N) [FFZ89], by means of Sylvester’s clock-and-shift matrices [Syl82]. For
generic A, it may be thought of as a generalization of SU(NN) for continuous N, allowing for
taking the limit N — oo.

Essentially (up to isomorphism), the MB algebra is the unique one-parameter deforma-
tion of the Poisson bracket algebra [Vey75, BFF78, FLS76, Ar83, Fle90, deW83, BCG97,
TD97], a uniqueness extending to the star product. Isomorphism allows for dressing trans-
formations of the variables (kernel functions and WFs, as in Section 13 on alternate or-
derings), through linear maps f — T(f), which leads to cohomologically equivalent star-
product variants, i.e. [Ba79, Vo89, BFF 78]

T(f*g) =T(f) ®T(9)- (120)

Consequently, the x-MB algebra is isomorphic to the algebra of *)-MB.
Computational features of *-products are discussed in Refs. BFF78, Han84, R0O92,
Zac00, EGV89, Vo78, An97, Brad4.

15 Omitted Miscellany

Phase-space quantization extends in several interesting directions which are not covered in
such a summarizing introduction.

The systematic generalization of the x-product to arbitrary non-flat Poisson manifolds
[Kon97], is a culmination of extensions to general symplectic and Kahler geometries [Fed94,
Kis01], and varied symplectic contexts [Ber75, RT00, CPP02, BGLO1]. For further work on
curved spaces, cf. Refs. APW02, BF81, PT99. For extensive reviews of mathematical issues,
cf. Refs. Fol89, Hor79, Wo98, AW70. For a connection to the theory of modular forms, sce
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Ref. Raj02. For WFs of discrete (finite systems), cf. Refs. Woo87, ACW98, RA99, RG00,
BHPO02.

Spin is treated in Refs. Str57, VG89, AWO00; and forays into a relativistic formulation
in Ref. LSUOQ2 (also see Refs. CS75, Ran66).

Inclusion of Electromagnetic fields and gauge invariance is treated in Refs. Mue99,
LF94, LF01, JVS87, ZC99, KOO00. Subtleties of Berry’s phase in phase space are addressed
in Ref. Sam00.
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Selected Papers
16 Brief Historical Outline

The decisive contributors to the development of the formulation are Hermann Weyl (1885
1955), Eugene Wigner (1902-1995), Hilbrand Groenewold (1910-1996), and Jose Moyal
(1910-1998). The bulk of the theory is implicit in Groenewold’s and Moyal’s seminal pa-
pers. But this has been a slow story of emerging connections and chains of ever-sharper
reformulations. Confidence in the autonomy of the formulation accreted slowly. As a re-
sult, attribution of critical milestones cannot avoid subjectivity: it cannot automatically
highlight merely the earliest occurrence of a construct, unless that has also been conclusive
enough to yield an “indefinite stay against confusion” about the logical structure of the
formulation.

H Weyl (1927) [Wey27] introduces the correspondence of “Weyl-ordered” operators to
phase-space (c-number) kernel functions (as well as discrete QM application of Sylvester’s
(1883) [Syl82] clock-and-shift matrices).

J von Neumann (1931) [Neu3l], in a technical aside off a study of the uniqueness of
Schrédinger’s representation, includes a Fourier transform version of the x-product which
promotes Weyl’s correspondence rule to full isomorphism between Weyl-ordered operator
multiplication and *-convolution of kernel functions.

E Wigner (1932) [Wig32] introduces the eponymous phase-space distribution function
controlling quantum mechanical diffusive flow in phase space. It specifies the time evolution
of this function and applies it to quantum statistical mechanics. (Actually, Dirac (1930)
[Dir30] has examined a similar object for the electron density in a multielectron Thomas-
Fermi atom, but interprets the negative values as a failure of his semiclassical approximation,
and dismisses the full quantum object.)

H Groenewold (1946) [Gro46]. (Based on Groenewold’s thesis work.) A seminal but
somewhat unappreciated paper which achieves full understanding of the Weyl correspon-
dence and produces the WF as the classical kernel of the density matrix. It reinvents
and streamlines von Neumann’s construct into the standard *-product, in a systematic
exploration of the isomorphism between Weyl-ordered operator products and their kernel
function compositions. It further works out the harmonic oscillator WF'.

J Moyal (1949) [Moy49] amounts to a grand synthesis: it establishes an independent
formulation of quantum mechanics in phase space. It systematically studies all expectation
values of Weyl-ordered operators, and identifies the Fourier transform of their moment-
generating function (their characteristic function) to the Wigner Function. It further in-
terprets the subtlety of the “negative probability” formalism and reconciles it with the
uncertainty principle and the diffusion of the probability fluid. Not least, it recasts the time
evolution of the Wigner function through a deformation of the Poisson bracket into the
Moyal bracket (the commutator of x-products, i.e. the Weyl correspondent of the Heisen-
berg commutator), and thus opens up the way for a systematic study of the semiclassical
limit. Before publication, Dirac contrasts this work favorably to his own ideas on functional

28



29

integration, in Bohr’s Festschrift [Dir45], despite private reservations and lengthy arguments
with Moyal.

M Bartlett and J Moyal (1949) [BM49] applies this language to calculate propagators
and transition probabilities for oscillators perturbed by time-dependent potentials.

T Takabayasi (1954) [Tak54] investigates the fundamental projective normalization con-
dition for pure state Wigner functions, and exploits Groenewold’s link to the conventional
density matrix formulation. It further illuminates the diffusion of wavepackets.

G Baker (1958) [Bak58] envisions the logical autonomy of the formulation, based on
postulating the projective normalization condition. It resolves measurement subtleties in
the correspondence principle and appreciates the significance of the anticommutator of
the x-product as well, thus shifting emphasis to the x-product itself, over and above its
commutator.

D Fairlie (1964) [Fai64] (also see Refs. Kun67, Coh76, Dah83)] explores the time-
independent counterpart to Moyal’s evolution equation, which involves the %-product, be-
yond mere Moyal Bracket equations, and derives (instead of postulating) the projective
orthonormality conditions for the resulting Wigner functions. These now allow for a unique
and full solution of the quantum system, in principle (without any reference to the conven-
tional Hilbert-space formulation). Autonomy of the formulation is fully recognized.

N Cartwright (1976) [Car76] notes that the WF smoothed by a phase-space Gaussian
as wide as or wider than the minimum uncertainty packet is positive-semidefinite.

M Berry (1977) [Ber77] elucidates the subtleties of the semiclassical limit, ergodicity,
integrability, and the singularity structure of Wigner function evolution.

F Bayen, M Flato, C Fronsdal, A Lichnerowicz, and D Sternheimer (1978) [BFF78]
analyzes systematically the deformation structure and the uniqueness of the formulation,
with special emphasis on spectral theory, and consolidates it mathematically. It provides
explicit illustrative solutions to standard problems and utilizes influential technical tools,
such as the x-exponential.

A Royer (1977) [Roy77] interprets WF's as the expectation value of the operator effecting
reflections in phase space. (Also see Refs. Kub64, Gro76, BV94].)

G Garcfa-Calderén and M Moshinsky (1980) [GMS80] implements the transition from
Hilbert space to phase space to extend classical propagators and canonical transformations
to quantum ones in phase space. (Further see Refs. KL01, Hie82, DKM88, CFZ98, DV97,
GRY94, Hak99, KL99, DP01. The most conclusive work to date is Ref. BCW02.)

J Dahl and M Springborg (1982) [DS82] initiates a thorough treatment of the hydro-
gen and other simple atoms in phase space, albeit not from first principles—the WFs are
evaluated in terms of Schrodinger wave-functions.

M De Wilde and P Lecomte (1983) [deW83] consolidates the deformation theory of
*-products and MBs on general real symplectic manifolds, analyzes their cohomology struc-

“ture, and confirms the absence of obstructions.

M Hillery, R O’Connell, M Scully, and E Wigner (1984) [HOS84] has done yeoman
service to the physics community as the classic introduction to phase-space quantization
and the Wigner function.
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Y Kim and E Wigner (1990) [KW90] is a classic pedagogical discussion on the spread of
wavepackets in phase space, uncertainty-preserving transformations, coherent and squeezed
states.

B Fedosov (1994) [Fed94] initiates an influential geometrical construction of the
*-product on all symplectic manifolds.

T Curtright, D Fairlie, and C Zachos (1998) [CFZ98] illustrates more directly the equiv-
alence of the time-independent %-genvalue problem to the Hilbert space formulation, and
hence its logical autonomy; formulates Darboux isospectral systems in phase space; works
out the covariant transformation rule for general nonlinear canonical transformations (with
reliance on the classic work of P Dirac (1933) [Dir33]; and thus furnishes explicit solutions
to practical problems on first principles, without recourse to the Hilbert space formulation.
Efficient techniques for perturbation theory are based on generating functions for complete
sets of Wigner functions in T Curtright, T Uematsu, and C Zachos (2001) [CUZ01]. A
self-contained derivation of the uncertainty principle in phase space is given in T Curtright
and C Zachos (2001) [CZ01].

M Hug, C Menke, and W Schleich (1998) [HMS98] introduces and exemplifies techniques
for numerical solution of x-equations on a basis of Chebyshev polynomials.
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1
Quantenmechanik und Gruppentheorie.
Von H, Weyl in Ziirich.
Mit 1 Abbildung. (Eingegangen am 13. Oktober 1927.)
Einleitung und Zusammenfassung, — I. Teil. Bedeutung der Reprisentation von

physikalischen Grofien durch Hermitesche Formen. § 1. Mathematische Grund-
begriffe, die Hermiteschen Formen betreffend. §2. Der physikalische Begriff
des reinen Falles. § 3. Die physikalische Bedeutung der reprisentierenden
Hermiteschen Form. §4. Statistik der Gemenge. — II. Teil. Kinematik als
Gruppe. §5. Uber Gruppen und ihre unitiren Darstellungen. §6. Ubertragung
auf kontinuierliche Gruppen. §7. Ersatz der kanonischen Variablen durch die
Gruppe. Das Elektron. § 8. Ubergang zu Schrédingers Wellentheorie. —
III. Teil. Das dynamische Problem. §9. Das Gesetz der zeitlichen Verinderung.
Die Zeitgesamtheit. § 10. Kinetische Energie und Coulombsche Kraft in der
relativistischen Quantenmechanik. — Mathematischer Anhang.

Einleitung und Zusammenfassung.

In der Quantenmechanik kann man zwei Fragen deutlich voneinander
trepnen: 1. Wie komme ich zu der Matrix, der Hermiteschen Form,
welche eine gegebene Grife in einem seiner Konstitution nach bekannten
physikalischen System repriisentiert? 2. Wenn einmal die Hermitesche
Form gewonnen ist, was ist ihre physikalische Bedeutung, was fiir physi-
kalische Aussagen kann ich ihr entnehmen? Auf die zweite Frage hat
v. Neumann in einer kiirzlich erschienenen Arbeit* eine klare und
weitreichende Antwort gegeben. Aber sie spricht noch nicht alles aus,
was sich dariiber sagen 148t, umfaBt auch nicht alle Ansitze, die bereits
in der physikalischen Literatur mit Erfolg geltend gemacht worden sind.
Ich glaube, daf ich in dieser Hinsicht zu einem gewissen Abschlufl gelangt
bin durch die Aufstellung des Begriifs des reinen Falles**. Ein reiner
Fall von Atomen z. B, liegt dann vor, wenn der betrachtete Atomschwarm
den hochsten Grad von Homogenitit besitzt, der sich realisieren l4Bt.
Der monochromatische polarisierte Lichtstrahl ist ein Beispiel aus anderem
Gebiet. Der reine Fall wird reprisentiert durch die Variablen der
Hermiteschen Form; die Form selber gibt Aufschluf dariiber, welcher
Werte die durch sie reprisentierte Grofe fihig ist, und mit welcher
Wahrscheinlichkeit oder Haufigkeit diese Werte in irgend

* Mathematische Begriindung der Quantenmechanik, Nachr. Gesellsch. d.
Wissensch., Gottingen 1927, S. 1.
¥ Wie mir Herr v. Neumann mitteilt, ist auch er inzwischen zur Auf-
stellung dieses Begriffs gelangt [Zusatz bei der Korrektur).
Zeitschrift fitr Physik. Bd. 46. 1
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einem vorliegenden reinen Fall angenommen werden. Auf diese
Theorie des reinen Falles griindet sich erst die Statistik der Gemenge;
v. Neumanns Ansatz bezog sich lediglich auf eine bestimmte Frage in
diesem Gebiet.

Der II. Teil handelt von der tiefer greifenden Frage 1. Sie hingt
aufs engste zusammen mit der Frage nach dem Wesen und der richtigen
Definition der kanonischen Variablen. Ein Versuch in dieser Rich-
tung, der das Problem erst in seiner wahren Allgemeinheit hervortreten
liefl, ist von Herrn Jordan unternommen worden®*. Doch enthalten
seine Entwicklungen eine ernstliche Liicke — indem aus seinen
Definitionen und Axiomen nicht hervorgeht, da einer Funktion £ (g) der
Lagekoordinaten g diejenige Matrix £ (@) zugeordnet ist, die nach dem
gleichen Funktionsgesetz aus den g reprisentierenden Matrizen @ gebildet
ist; geschweige denn, daf etwas Derartiges fiir Funktionen der Lage- und
Impulskoordinaten geleistet wiirde. Ohne einen solchen Zusatz ist aber
sein Schema inhaltsleer. AuBerdem ist seine Fassung des Begriifs der
kanonischen Variablen mathematisch unbefriedigend und physikalisch
nicht haltbar. Hier glaube ich mit Hilfe der Gruppentheorie zu einer
tieferen Einsicht in den wahren Sachverhalt gelangt zu sein **. Der innere
prinzipielle Grund fiir die kanonische Paarung tritt dadurch deutlich
hervor, die sich einstellt, wenn die zugrunde liegende Gruppe eine kon-
tinuierliche ist; aber der Ansatz umspannt zugleich die diskreten Fille
wie das magnetische Elektron (Vierergruppe), wo von einer kano-
nischen Paarung verniinftigerweise nicht mehr die Rede sein kann. Im
kontinuierlichen Gebiet mache ich gegeniiber dem differentiellen den
integralen Standpunkt geltend, indem ich fiiberall die infinitesimale
Gruppe, an welche die Formulierung bisher sich klammexrte, durch die
volle kontinuierliche Gruppe ersetze. Der Ubergang zu Schrdodingers
Wellengleichungen 148t sich dann in aller Strenge vollziehen. Als
weiteren Erfolg meines Ansatzes mochte ich anfithren, daB er gestattet,
den Funktionalausdruck einer Griofie wie etwa der Energie durch die

* {Ther eine neue Begrimdung der Quantenmechanik, ZS. f. Phys. 40, 809,
1927; 44, 1, 1927. Vgl. ferner P. A. M. Dirac, Proc. Royal Soc. (A) 113, 621,
1927, und D. Hilbert, J. v. Neumann, L. Nordheim, Uber die Grundlagen
der Quantenmechanik, Math. Ann. 98, 1, 1927.

** Diese Verkniipfung mit der Gruppentheorie liegt in ganz anderer Richtung
als die Untersuchungen von Herrn Wigner, die erkennen lassen, daB die Struktur
der Spektren nach ihrer qualitativen Seite hin durch die bestehende Symmetrie-
gruppe bestimmt ist (mehrere Arbeiten in der ZS. f. Phys. 40, 492 und 883; 43,
624, 1926/1927).
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kanonischen Variablen nach einer eindeutigen Vorschrift auf die Matrizen
zu iibertragen, um was fiir Funktionen es sich auch handeln mag; wihrend
die bisherige Fassung sich ernstlich nur auf Polynome bezog und auch
dann noch dahingestellt bleiben mufte, ob man ein Monom wie p?q im
Matrizenkalkiil als p?g oder ¢gp® oder pgp oder als eine Kombination
von dem allen zu interpretieren hatte.

Die Durchfiihrung konkreter Fille verlangt die Losung des dyna-
mischen Problems. Das ist wohl im Grunde die Auigabe, unter den
GroBen des Gruppengebiets diejenigen zu ermitteln, welche den gemessenen
Ort und die gemessene Zeit bedeuten. Hier liegt ein Schema bisher nur
fir den Fall vor, daB die Zeit als einzige unabhingige Verinderliche
auftritt (Ausschluf der Feldtheorie) und daf die Zeit auch nur als unab-
hingige Variable, nicht als reale Zustandsgrofe vorkommt (AusschluB
der eigentlichen Relativititsmechanik). Dennoch 1iBt sich wenigstens
der relativistische Ansatz der kinetischen Energie ohne weiteres in die
Quantenmechanik ibertragen. Jch behandle diese Dinge im letzten
Kapitel mehr zur Ilustration der allgemeinen Theorie. Die Analoga der
Schrodingerschen Schwingungsgleichungen sind dabei keine eigent-
lichen Differentialgleichungen, sondern an Stelle der gewthnlichen
Differentiation treten differentiationsartige Prozesse.

Uber die benttigten mathematischen Begriffe und Tatsachen habe
ich in eingeschobenen Absitzen kurz referiert. In einem Anhang sind
die wichtigsten mathematischen Fundamente der Theorie durch Beweise
gestiitzt worden. Dem physikalischen Leser hoffe ich damit mehr zu
dienen als mit Hinweisen auf die mathematische Literatur, die ihm das
hier Erforderliche meist nur in Verschlingung mit anderen, ihn nicht
interessierenden Dingen bietet.

J. Teil. Bedeutung der Repridsentation von physikalischen
Grofen durch Hermitesche Formen.

§ 1. Mathematische Grundbegriffe, die Hermiteschen
Formen betreffend. Die in der Uberschrift angekiindigten Grund-
begriffe und -tatsachen stelle ich hier in der Nomenklatur der mehr-
dimensionalen analytischen Geometrie kurz zusammen. Das Abweichende
von der gewthnlichen n-dimensionalen Geometrie liegt darin, da die
Komponenten der Vektoren

T = (% Ty .- Tp) 1)
1%
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nicht pur reelle, sondern beliebige komplexe Zahlen sein konmen, und
daf als Quadrat des Betrages eines Vekiors dementsprechend die
oHermitesche Einheitsform®

|2 = 2,8, + 2,8, + - + 2,7, )
der Metrik zugrunde liegt (der Querstrich bedeutet den Ubergang zur

. konjugiert komplexen Zahl). Vektoren (1) werden in der iiblichen Weise

mit Zahlen multipliziert und addiert. Sie bilden eine #-dimensionale
lineare Mannigfaltigkeit, den Vektorraum oder Vektorksrper ®,; d. h-
es lassen sich auf mancherlei Art n Vektoren ef, e, ..., ¥ so auswihlen,
daB jeder Vektor y auf eine und nur eine Weise in der Form
r=ayef +afef + - anen

sich darstellen 148t. Wird z. B. ef als der Vektor ¢; = (0,0, ..., 1,0, ..., 0)
gewidhlt (1 steht an i-ter Stelle), so fallen die ,Komponenten z] von y
in bezug auf das Koordinatensystem (ef, ¢3, ..., e7)“ mit den ,absoluten
Komponenten“ x; zusammen. Iin Koordinatensystem, in welchem das
Quadrat des Betrages von y sich durch die Komponenten z; des will-
kiirlichen Vektors r mittels der Formel (2) ausdriickt, heile normal.
Alle normalen Koordinatensysteme sollen als gleichberechtigt
gelten, das durch unseren arithmetischen Ausgangspunkt bedingte spezielle
Koordinatensystem (e;) soll unter ihnen seine ausgezeichnete Stellung ver-
lieren. In Zukunft bedeutet daher auch e; ein beliebiges normales Ko-
ordinatensystem, z; die darauf beziiglichen Komponenten des Vektors 1,
Die Formeln fir den Ubergang vom Koordinatensystem e; zu einem
anderen ¢; lauten allgemein:

e == ? Cikbry Tp = 2 €ik i 3)
” 7

Die Bedingungen, welche die Koeffizienten ¢;;, erfiillen miissen, damit
eine ,unitdre Transformation* vorliegt, welche zwischen zwei nor-
malen Koordinatensystemen vermittelt, sind leicht aus der Definition zu
ermitteln und entsprechen genau den aus der elementaren analytischen
Geometrie gelinfigen. Wenn wir mit E die Matrix || e;|| bezeichnen
und der * das Transponieren einer Matrix, die Vertauschung von Zeilen
und Spalten bedeutet, 1 aber die die Identitit darstellende Einheitsmatrix,
so lauten sie:
EE* —E*E = 1.

Die Formeln (8) oder, wie ich jetzt lieber schreiben will:

e 2 Cik Ty 4)
2
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haben bekanntlich noch eine zweite Bedeutung; sie stellen, unter Zu-
grundelegung des festen normalen Koordinatensystems dere;, eine unitire
Abbildung des Vektorraumes auf sich selber dar, vermdge deren
dem Vektor ¥ == > z;¢, der Vektor ' = > z}e; zugeordnet wird. Ich
bezeichne diese Abbildung kurz mit 3" = rE. Dann driickt sich die
Zusammensetzung zweier Abbildungen

¥ =1E " =¢F

paturgemiB durch " — y(EE') aus — E, E’ folgen sich von links nach
rechts, wie wir zu lesen gewohnt sind —, und man befindet sich in
Einklang wmit der iiblichen Festsetzung des Matrizenkalkiils, nach

welcher aus
E= el F =l

durch Komposition die Matrix EE' mit den Koeffizienten
2 Csr erl-k
r

entsteht. Der geometrische Standpunkt kommt darauf hinaus, daf wir
im Vektorraum nur solche Verhilinisse studieren, welche invariant sind
gegeniiber beliebigen unitiren Abbildungen. Es ist noch bequem, neben (2)
das skalare Produkt (ry) zweier Vektoren y und y durch

Q’t)) == iﬁlgl +$2§2 + tct + wn??n

einzufithren. (yr) ist das Konjugierte zu (¢y). Man wird zwei Vektoren
senkrecht anfeinander nennen, wenn ihr skalares Produkt verschwindet.

Zweil von 0 verschiedene Vektoren gehtren demselben Strahl an,
wenn der eine aus dem anderen durch Multiplikation mit einer (kom-
plexen, von O verschiedenen) Zahl hervorgeht. Ein Strahl kann ein-
deutig bezeichnet werden durch einen ihm angehtrenden Vekfor y vom
Betrage 1 (Einheitsvektor). Aber dieser ist seinerseits durch den Strahl
nicht eindeutig bestimmt, sondern an Stelle von ¢ kann mit gleichem
Recht jeder Vektor ¢y treten, der aus ihm durch Multiplikation mit einer
beliebigen Zahl ¢ vom absoluten Betrage 1 hervorgeht. Das ist wesent-
lich anders als im gewdhnlichen Raum, wo nur die Doppeldeutigkeit
eines Vorzeichens -+ 1 iibrigbleibt. Fasse ich eine unitire Abbildung (4)
auf nicht als Abbildung des Vcktor-, sondern des Strahlenkorpers (homo-
gener Standpunkt), so soll sie kurz eine Drehung heiflen. E und E'
stellen dieselbe Drehung dar: E ~ E', wenn E' = ¢ E ist; ¢ bedeutet
dabei, wie im folgenden stets, einen Zahlfaktor vom Betrage 1.
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Eine Hermitesche Form ist eine Funktion des willkiirlichen
Vektors ¥ = (;) von der Gestalt*

n
AQ@) = kE Uk %3 T (5)
2, k=1
deren Koeffizienten a;, die Symmetriebedingung
Gy = Gz oder A% — A 6)

erfilllen. Mit A bezeichne ich zugleich die Koeffizientenmatrix || #:x || in
dem gerade benutzten Koordinatensystem. Wieder ist es zweckmiBig,
damit die zugehorige bilineare Bildung zu verkniipfen:
A@y) = % Bip T Yy
Es ist zufolge der Symmetriebedingung
Ay = 4A®Y),
und das ist ihre von der Wahl des Koordinatensystems unabhingige
Schreibweise. Insbesondere gilt A (x) = A(¥), & h. die Werte der
Hermiteschen Form sind reell; ihr Wert #ndert sich nicht, wenn der
Argumentvektor y ersetzt wird durch &y. Mit jeder Hermiteschen
Form A ist in unitér-invarianter Weise die Abbildung ¢’ — r 4 ver-
kniipft, welche dieselbe Koeffizientenmatrix besitzt. Die invariante Natur
der Verkniipfung geht daraus hervor, daf die Abbildung einem Vektor x
denjenigen ' zuordnet, der identisch in y die Gleichung erfiillt:
@9 = 4@y

Die Grundtatsache fiir Hermitesche Formen ist der Satz von der
Hauptachsentransformation: Ein normales Koordinatensystem e; kann
zu A so gewshlt werden, dafl in ihm

AQR) = a, 2,2, + Gy Ty Ty + +++ + Gy 2, T, @)

wird. Die Eigenwerte a,, a,, ..., a, sind eindeutig durch die
Hermitesche Form bestimmt (natiirlich nur bis auf die Reihenfolge).
Was die zugehtrigen Hauptachsen oder Eigenvektoren e; betrifft,
so steht es mit ihnen in Hinsicht der eindeutigen Bestimmtheit folgender-
mafen. Seien etwa die Eigenwerte a,, a,, a, einander gleich, = @, und
von den iibrigen verschieden. Dann gehtrt zum Eigenwert a der von
den Grundvektorene,, e, ¢, aufgespannte dreidimensionale Eigenraum R (a),
der aus allen Vektoren y von der Gestalt z, e, 4 z,¢, + 2;¢; besteht; in
thm ist (e, e, e,) ein normales Koordinatensystem. Die zu den

* Formen und Matrizen werden stets mit grofen lateinischen Buchstaben
bezeichnet.
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numerisch verschiedenen Eigenwerten a', a”, ... gehorigen Teil-
rdume R (@), R(@"), ..., die gegenseitig aufeinander senkrecht stehen,
sind durch A eindeutig determiniert; in jedem von ihnen kann aber das
pormale Koordinatensystem willkiirlich gew#hlt werden. Das letzte
bedeutet in dem angenommenen Beispiel, da x,, x,, #; untereinander noch
einer beliebigen unitiren Transformation unterworfen werden konnen,
ohne daB die Normalform (7) zerstort wird.

Zwei Hermitesche Formen A, B lassen sich dann und nur dann
simultan auf Hauptachsen transformieren, wenn die Koeffizienten-
matrizes vertauschbar sind: AB — B A. Ein entsprechender Satz gilt
fiir mehr als zwei Hermitesche Formen, ja fiir irgend eine endliche oder
unendliche Gesamtheit solcher Formen.

§ 2. Der physikalische Begriff des reinen Falles. Ich
exemplifiziere am Beispiel des magnetischen Elektrons, weil hier sehr
einfache, aber vom klassischen Standpunkt paradoxe Verhiltnisse vor-
liegen. Nach der Annahme von Goudsmit und Uhlenbeck, die sich
seither bestens bew#hrt hat, ;muB man dem Elektron ein eigenes Impuls-
moment zuschreiben, dessen Komponente 6, in einer beliebigen Richtung,
etwa der z-Richtung, nur der beiden Werte + 1 und — 1 fihig ist, wenn
hj4x als Einheit zugrunde gelegt wird. Man kann sich vorstellen, daf aus
einem gegebenen Elektronenstrom, durch ein Verfahren analog dem be-
kannten Stern-Gerlachschen Experiment zum Nachweis der Richtungs-
quantelung bei Atomen, der Schwarm derjenigen Elektronen ausgesondert
wird, fiir welche ¢, den Wert + 1 hat. Die Elektronen dieses Schwarms &,
mogen keine Storung erfahren, so dafi fiir sie alle dauernd mit Sicher-
heit 6, den Wert -+ 1 besitzt. In einem solchen Elektronenschwarm
haben wir (wenn wir noch von Ort und Geschwindigkeit der Elek-
tronen abstrahieren) einen ,reinen Fall“ vor uns: er ist von einer
inneren Homogenitst, die prinzipiell nicht mehr gesteigert werden kann.
Denn alle physikalischen Fragen, welche sich sinnvoll mit Bezug auf ihn
stellen lassen, finden eine von vornherein angebbare numerisch
bestimmte Antwort. Solche Fragen sind allein die folgenden: Ist r
irgend eine Richtung, mit welcher Wahrscheinlichkeit hat fiir ein Elek-
tron des &,-Schwarms die GroBe ¢, den Wert + 1 oder — 1? Die
numerisch bestimmte Antwort lautet: Wenn 9 der Winkel ist, den die
r- mit der z-Richtung bildet, so sind die beiden Wahrscheinlichkeiten bzw.

&
— 2 _ an2 v
= ¢0s 5 und — sin 5
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Die Wahrscheinlichkeit ist als Haufigkeit im Elektronenschwarm zu ver-
stehen; sie wiirde sich, wemn mit dem Schwarm das Aussonderungs-
experiment in der r-Richtung vorgenommen wiirde, in dem Stirke-
verhilinis der beiden Teilstrahlen bekunden*. Hutten wir am Anfang statt
der z- eine andere, die #'-Richtung zugrunde gelegt, so hitten wir einen
anderen reinen Fall, den Elekfronenschwarm &, bekommen. In ihm

hat 6, mit der Wahrscheinlichkeit cos”% den Wert + 1, mit der Wahr-

scheinlichkeit sin”% den Wert — 1, wenn 8’ — X (r,z') ist; insbesondere

hat ¢, mit Sicherheit den Wert -+ 1. Dieser reine Fall ist von dem
ersten verschieden, weil die gleichen physikalischen Fragen hier andere
numerische Antworten finden. Es gibt so viele verschiedene reine Fille,
wie es verschiedene Richtungen # gibt. Wir konnen aus solchen reinen
Stromen &,, ©,, ... Mischungen in irgend einem Verhiltnis herstellen.
Die H#ufigkeit, mit welcher in einem solchen Mischstrom ein ¢, — + 1
oder — 1 ist, héingt von dem Mischungsverhiltnis ab. Wir sind hier
umgekehrt darauf angewiesen, aus den experimentell beobachteten Haufig-
keiten Schliisse auf die Konstitution des Mischstromes zu ziehen. Der
Unterschied zwischen reinem Fall und Mischung, den ich hier aufstelle,
ist analog zu dem biologischen Begriffen der ,reinen Linie“ (innerhalb
der reinen Linie gelten die Mendelschen Vererbungsgesetze) und der
,Population (auf welche sich die Gesetze von Galton bezogen). Hier
wie dort ist es eine wichtige Aufgabe der Experimentierkunst, reine
Linien zu isolieren. Die TUnterscheidung: Theorie der reinen Falle
einerseits, Statistik der Gemenge andererseits, scheint mir fundamental fiir
die richtige Erfassung des Sinnes der Quantenmechanik.

An dem Tatbestand, die Elektronenschwirme betreffend, wie er
bisher beschrieben wurde, ist nichts Paradoxes. Statt vom Schwarm
spreche ich in Zukunit vom einzelnen Elektron und demgemiB von Wahr-
scheinlichkeit statt von Hiufigkeit. FEtwas Paradoxes liegt erst in der
Aussage, daf 6, die Komponente eines gewissen Vektors, des Impuls-
momentes, in bezug auf die z-Richtung ist. Denn dies involviert doch,
wenn wir ein rechtwinkliges Koordinatensystem xy 2 im Raume ein-

* Obwohl also ©; noch wieder zerlegt werden kann, sind doch die so ent-
stehenden Teilstrahlen nicht homogener als Sy selbst. Das ist genan wie bei
einem Lichtstrahl, der durch zwei gegeneinander verdrehte Nicols hindurch-
gegangen ist: er ist von derselben Beschaffenheit wie Licht, das nur durch den
zweiten Nicol hindurchging.
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tiishren und die willkiirliche Richtung r die Richtungskosinus a, b, ¢ hat,
die Gleichung

6, = a6, + bo, +cq,. 8)
Wie vertragt sich das mit dem Umstand, daf ¢, so gut wie ¢, 6,, 6, nur
der Werte -+ 1 fihig ist? Aber in einem vorliegenden reinen Fall haben
die hier auftretenden Grofen iiberhaupt keine mit Sicherheit angebbaren
Werte, so daB zuniichst der Sinn der Gleichung (8), wenn er in der
iiblichen Weise auf die Werte der physikalischen Grofien bezogen werden
soll, ganz im Leeren héngt. Sie wird einen Inhalt erst gewinnen, wenn
wir die physikalischen Grofen durch solche mathematische Entititen
darstellen, welche Multiplikation mit reellen Zablen und Addition unter-
einander zulassen. — Und was soll es zweitens heifien, dal dieser Vektor
mit den Komponenten ¢, 6,, 6, ,Impulsmoment* ist? Damit wird
offenbar ein bestimmtes Verbalten dieser Griofen gegeniiber einem das
Elektron einbettenden Magnetfeld (H,, H,, H,) ausgesagt. Wenn wir
uns das Elektron ganz naiv als ein rotierendes Kiigelchen vorstellen, in
welchem das Verhiltnis von Ladungs- und Massendichte iiberall konstant
ist, so ergibt sich in der Hamiltonschen Energiefunktion die Hilfte

des Terms
w (Ha: Gy + Hydll + Hz 6z)7 (9)

dessen Faktor u —

4;:;0 das Bohrsche Magneton ist (¢ Ladung
m Masse des Elektrons, ¢ Lichtgeschwindigkeit). Der spektroskopische
Erfolg der Annahme von Goudsmit und Uhlenbeck beruht bekanntlich
darauf, da8 fiir das Elektron der Ausdruck (9) ohne den Faktor !/, als
giiltig betrachtet wird. Wieder ist es notig, den Sinn eines Rechen-
ausdrucks wie (9) zu verstehen, der die Addierbarkeit der Grofen ¢
voraussetzt; dariiber hinaus muf aber erkannt werden, in welcher Weise
die Hamiltonsche Energiefunktion das dynamische Geschehen bestimmt.

§ 3. Die physikalische Bedeutung der reprisentierenden
Hermitescher Form. Der Kalkil der Hermiteschen Formen ent-
spricht in rechnerischer Hinsicht allen Anforderungen, welche sich aus
dem eben entwickelten Programm ergeben. Jede physikalische GriBe
wird reprisentiert durch eine Hermitesche Form, alle physi-
kalischen GrdBen an demselben System durch Hermitesche
Formen der gleichen Variablen z; Es ist der schwierigere Teil
der Physik, die Regeln ausfindig zu machen, nach denen man zu einer
physikalischen Grofe die reprisentierende Form und ihre Matrix findet.
Hier soll zunichst nur davon die Rede sein, was diese Matrix physikalisch
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bedeutet. Ich nehme dabei die Dimensionszahl n des Vektorraums, die
Zahl der Variablen z; endlich, obschon sie in den meisten Fillen un-
endlich grof ist. Alles Gesagte 148t sich aber analogisch auf den un-
endlich dimensionalen Vektorraum tibertragen. Im oben besprochenen
Beispiel des Elektrons ist, wie sich zeigen wird, » — 2.

Der einzelne reine Fall wird durch einen Vektor y vom
Betrage 1 in unserem #n-dimensionalen Vektorraum gegeben,
die einzelne physikalische Grofe o« wird reprisentiert durch eine
Hermitesche Form A4 in diesem Raume. Mittels Einfithrung eines
geeigneten normalen Koordinatensystems e,, e, ..., ¢, bringe man A (r)
auf Hauptachsen:

AQR) =0,2,%, + G, 23Ty + -+ + A Ty Tp
(x=x161+x'262+"'+xnen)' (10)

Die Eigenwerte a,, a,, ..., a, bedeuten die Werte, deren die
physikalische Grofe o iberhaupt fahig ist; die Zahlen |z, |3,
|2y ’, .., |2,|* bedeuten die Wahrscheinlichkeiten W(), mit
denen in dem reinen Fall y diese Werte angenommen werden.
Thre Summe ist =— 1, weil ¢ ein Vektor vom Betrage 1 ist. Der zweite
Teil der Aussage erfordert noch eine gewisse Prizisierung fiir den Fall,
daB mehrere Eigenwerte gleich sind. Sei etwa wieder a, —= g, =—=a; —a
von den iibrigen Eigenwerten verschieden; dann gehort zu dem Eigen-
wert @ der dreidimensionale Eigenraum $® (a), der durch die Vektoren e,,
ey, ¢, aufgespannt wird. Die Wahrscheinlichkeit, mit welcher die physi-
kalische Grofle ot in dem reinen Fall ¥ den Wert ¢ annimmt, ist dann
= |z, ?+ |2, P + |2, | d. i gleich dem Quadrat des Betrages der senk-
rechten Projektion des Vektors r auf den Eigenraum R (a). Es ist
wesentlich zu bemerken, da mit den Eigenriumen auch die in ihnen
liegenden Projektionen des gegebenen Vektors ¢ durch die Form 4 ein-
deuntig bestimmt sind. Gemaf den Wahrscheinlichkeiten, mit denen die
Werte @, angenommen werden, ist der Wert 4 (z) der Hermiteschen
Form selber der Mittelwert der Grofe o im reinen Fall y.

Da alle Aussagen iiber den reinen Fall y numerisch ungeindert
bleiben, wenn ¢ durch ey ersetzt wird, darf zwischen ihnen nicht unter-
schieden werden. Dem reinen Fall entspricht also nicht eigent-
lich der Vektor, sondern der Strahl; wir haben nicht im Vektor-,
sondern im Strahlkdrper zu operieren. Dieser Umstand wird erst im
zweiten Teil seine fundamentale Bedeutung enthiillen.
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s ist klar, daff man Hermitesche Formen addieren und daf man
sie mit reellen Zahlen multiplizieren kann, ohne dadurch aus ihrem Be-
reich herauszotreten. Die kalkulatorischen Anforderungen, die wir am
Schluf von § 2 erhoben, sind erfiillt.

Wenn die Werte, deren die physikalische Grofe oo fihig ist, sehr
dicht liegen oder gar eine kontinuierliche Skale bilden, wird man nicht
fragen nach der Wahrscheinlichkeit, mit welcher sie einen bestimmten
Wert annimmt, sondern mit der sie in ein bestimmtes Wertintervall
a < oo = o' hineinfillt. Nach unserer Anweisung haben wir dann im
Ha—n_;ptachsensystem diejenigen Eigenvektoren e¢; aufzusuchen, deren zu-
gehorige Eigenwerte a, in jenes Intervall hineinfallen; sie spannen den
Teilraum ER';’ auf. Die gesuchte Wahrscheinlichkeit ist die auf diesen
Teil der Indizes ¢ sich erstreckende Summe

SuE (0 < e < a), (1)
i

der quadrierte Betrag der senkrechten Projektion des den reinen Fall
darstellenden Vektors y auf den Teilraum QHZ'. Die Formen. (11) sind
es, welche v. Neumann a. a. O. als ,Einzelformen* E? einfiihrte.

Liegen mehrere Grofen o, B, ... vor, deren zugehtrige Hermite-
sche Formen vertauschbare Koeffizientenmatrizes besitzen, so lassen
sie sich alle simultan durch Einfilhrung eines geeigneten normalen
Koordinatensystems e; auf Hauptachsen transformieren. Die korrespon-
dierenden Eigenwerte zu e; mogen a;, b;, ... heiflen. 3 =— e; stellt einen
reinen Fall vor, in welchem jede der betrachteten Grofen mit Sicherheit
einen bestimmten Wert hat, nimlich o den Wert a;, B den Wert b; usw.
Die klassische Physik nimmt an, da es sich fiir alle Grofen so verhilt,
und sie 148t nur die reinen Falle e, ¢, ..., &, die besonders aus-
gezeichnet sind und in denen alle Gréfen einen bestimmten Wert haben,
als reine Fille zu und faBt die anderen bereits als Gemenge von ihnen
auf. Sobald aber zwei physikalische GroBen auftreten, deren Matrizes
nicht vertauschbar sind, entfallt diese Méoglichkeit: In einem reinen
Falle, in welchem die erste Grofe einen mit Sicherheit angebbaren Wert
hat, bestehen fiir die Werte der zweiten Grofe nur Wahrscheinlichkeiten.
Das ist in Einklang mit Heisenbergs Anschauungen, wie er sie kiirz-
lich in dieser Zeitschrift (43, 172, 1927) entwickelte.

Im Beispiel des Elektrons ist » — 2, weil jede Grofe nur
zweier Werte fihig ist. Unter Verwendung eines bestimmten normalen
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Koordinatensystems e,, e, lauten die den GroSen o, 6,, 6, entsprechenden
Matrizen #

S, — 01

o 1| s=]1

oder als Hermitesche Formen geschrieben:

y (12)

k4

—i 0

i

B8y — By, BBy + BTy, (%, By — 2, 7,).
Jede von ihnen, ja auch das zu einer beliebigen anderen Richtung » mit
den Richtungskosinus a, b, ¢ (a® 4 b* - ¢ = 1) gehorige
a, b+ic
b—ic, —a (13)
hat die Eigenwerte 1~ 1. Der reine Fall, bei welchem ¢, mit Sicherheit
den Wert 4 1 hat, ist durch den Vektor e, gegeben. Im reinen Fall
¥ = (%,, z,) sind die Wahrscheinlichkeiten fiir 6, == 4-1 bzw. gleich
|, % |23|>. Wir suchen eine Richtung r auf, deren zugehbriges g, in
diesem Falle mit Sicherheit den Wert - 1 hat, d. h. fiir welche der
Vektor (z,, #,) in die zum Eigenwert - 1 gehtrige Hauptachse von

fallt:
S 1 az, + (b + i)z, = =,
®—i0)w, —ax, = 2,

S,.:: an+bSy+cS, =

Daraus ergibt sich
By:®g=b+tic:l—a=14a:b—ic
a ist der Kosinus des Winkels & zwischen der r- und der z-Richtung.
Wir finden
|2, P:]wgP =0+ c*:(1 —a)) = 1 —a®:(1 —a)?,
g

=14a:1—a =cos2%;sin2_2_.

§ 4. Statistik der Gemenge. Liegt ein Gemenge vor, in welchem
der reine Fall v mit der relativen Stiirke v, vertreten ist, Ev! =1, so
ermitteln sich die in ihm stattfindenden Wahrscheinlichkeiten W offenbar
durch Summation iber die den einzelnen reinen Fillen p zugehorigen

Wahrscheinlichkeiten W(x) in der Form
W frama E'I)EW(@).
b3
Darin liegt keinerlei neuer Ansatz. Wenn das Gemenge ein ganzes

Kontinuum reiner Fiulle enthilt, verwandeln sich die Summen in In-
tegrale.

* W. Pauli jr., Zur Quantenmechanik des magnetischen Elektroms, ZS. f.
Phys. 48, 601, 1927; P. Jordan, ebenda 44, 21ff, 1927.
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Wenn wir nur wissen, welche reinen Fille y in einem Gemenge
vertreten sind — sie werden ein gewisses Gebiet & des Strahlenkirpers
ausfiillen —, werden wir der Statistik die Annahme zugrunde legen, da8
innerbalb & alle y gleichberechtigt sind. Diese Annahme ist moglich
und bat einen klaren Sinn, weil der r-Raum als metrischer Raum ein
natiirliches VolumenmafB trigt. Solche Gemenge entstehen namentlich
durch Stérungen, z. B. durch die Wirmebewegung und die Zusammenstiofe
der Partikeln, auf welche sich die Wahrscheinlichkeitsfeststellungen be-
ziehen. Zunichst ist bei Mittelung iiber den ganzen Strahlen-
korper

i _
() —= —, (o) =0 (G F k).

"

Die Klammer () bezeichnet den Mittelwert. Danach ist der Mittelwert
der durch die Form (5) dargestellten GroBe o, wenn iiber die auf-
tretenden reinen Fille gar nichts bekannt ist,

= ';‘(an + 35 + -+ + pn)-

Die Summe der Glieder in der Hauptdiagonale, die Spur der Hermite-
schen Form, stellt sich iibrigens dadurch als eine Invariante gegeniiber
unitdren Transformationen heraus.

Ein weiteres Problem dieser Art ist das folgende: o und B seien
zwei bzw. durch 4 und B reprisentierte Grofen. Ich fiihre die beiden
aus den Eigenvektoren ¢; und ¢f von 4 bzw. B bestehenden normalen
Koordinatensysteme ein:

A@®)= X uzT, BE)= ;b«;ﬁﬁ ¢ = Doy = X ated),
7
und die unitire Transformation, welche zwischen ihnen vermittelt:
T = ;tikm,-.

Es sei bekannt, daB die Grofe o sicher in den Grenzen o << o < a
liegt; gefragt ist nach der Wabrscheinlichkeit W, mit welcher die
GroBe B in den Grenzen b << f << V' liegt. Von den Eigenwerten
der Form A mbgen etwa a,, a,, ..., @, dem Intervall g, o' angehbren,
wihrend b, b,, ..., b, die Eigenwerte der Form B sind, welche sich
zwischen b und b’ finden. Dadurch, da8 wir wissen, o liegt mit Sicher-
heit zwischen & und a/, ist es ausgeschlossen, daf o einen von a,, a,, ..., @
verschiedenen Eigenwert annimmt; die damit vertriglichen reinen
Falle sind diejenigen, fiir welche #,4, = -+ = », = O ist, sie gehoren
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dem von ¢, ¢, ..., e, aufgespanuten Teilraum M2 an. Der ins Quadrat
erhobene Betrag der senkrechten Projektion eines beliebigen Vektors ¢
auf diesen Teilraum ist gegeben durch die Einzelform

' 9 —_ n
By = 2@ = ) ;% (14)
i=1 i, k=1
Die Wahrscheinlichkeit, mit der in einem reinen Fall y die GriSe B

emen der Werte b, by, ..., b, annimmt, ist andererseits gegeben durch
die Einzelform

[ n U
y ® ok = . z
Fy = 2010 = Zfutify;  fie = > tialee
i=1 i k=1 s=1
- . ! -
Nach unserer Anweisung hat man in Fg alle Variablen x; auler den

ersten @ gleich Null zu setzen und dann iiber den Teilraum R zu
mitteln. Dabei ist

@By — {1/9 (firs =% < g)
*"F 771 0 (tiir alle anderen Paare i, )
oder
(o) — —;-e,“- Gr=12 ..,n).
So kommt
W= "‘Efrr = — 2 finrs = — 2 E‘trsl
Qr=1 Qi k=1 0 r=1s5=1

Hilt man das Intervall aa’ fest und will nur die relativen Wahrschein-
lichkeiten miteinander vergleichen, die verschiedenen Intervallen bb' ent-

1 .
sprechen, so kann man den konstanten Faktor — weglassen. Die Summe

rechts ist die Spur von Eg'Fg'. Weil einer Hermiteschen Form die
Abbildung mit derselben Koeffizientenmatrix unitir-invariant assoziiert
ist, hat neben der Spurbildung auch die Zusammensetzung der Matrizen
von Hermiteschen Formen einen invarianten Sinn. Infolgedessen ge-
niigt es, die Einzelformen EZ', Fg' in irgend einem normalen Koordi-
natensystem zu kennen, um daraus die gesuchten relativen Wahrschein-
lichkeiten vermittelst der Formel

W = Spur (EY . F3)

zu finden. Diese Art von Fragen tiber Gemenge zieht v. Neumann
a. a. 0. allein in Betracht. Sein Schlufiresultat ist mit unserem natiirlich
inhaltlich identisch, aber seine Formel ist komplizierter. In der ganzen
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Betrachtung kann o durch mehrere Groflen ersetzt werden, die simultan
beobachtbar sind, deren Hermitesche Formen sich also simultan auf
Hauptachsen bringen lassen, desgleichen f§.

Erst bei solchen Fragen iiber Gemenge spielt die Statistik eine
Rolle, welche ,relativ ist auf unsere Kenntnis und Unkenntnis¢, wie
Laplace sagt, oder auf Stérungen, die man nicht im einzelnen verfolgen
will, obwohl sie sich, wenigstens prinzipiell, verfolgen lieflen. Die Wahr-
scheinlichkeit, von der in den reinen Fillen die Rede ist, hat hingegen
eine vollig objektive Bedeutung, die nichts mit Storungen zu tun hat,
und wird durch strenge Naturgesetze regiert.

JI. Teil. Kinematik als Gruppe.

§ 5. Uber Gruppen und ihre unitaren Darstellungen. Fir
die unitiren Abbildungen gilt ein analoges Theorem, wie das von
der Hauptachsentransformation der Hermiteschen Formen: Zu
einer gegebenen unitiren Abbildung 148t sich ein solches normales
Koordinatensystem e; finden, in welchem die Abbildung durch die Glei-
chungen

Ty == €Ty (15)
wiedergegeben wird. Die Eigenwerte ¢ sind Zahlen vom absoluten
Betrag 1, ihre Phasen g, ¢ = ¢!¥k, heifen die Drehwinkel der umi-
tiren Abbildung. Analoge Bemerkungen, wie fiir die Hauptachsentrans-
formation der Hermiteschen Formen, greifen Platz betreffs der Ein-
deutigkeit, mit welcher Eigenwerte und Eigenvektoren bestimmt sind,
sowie betreffs der simultanen Uberfiihrung mehrerer unitirer Abbildungen
in die Normalform (15).

Aus einer Gruppe unitirer Abbildungen abstrahiert man das
Gruppenschema, indem man die Abbildungen zu Elementen gleich-
giiltiger Beschaffenheit degradiert und nur auf die Art ihrer Zusammen-
setzung achtet. Die abstrakte Gruppe ist also ein System von Elementen,
innerhalb dessen durch ,Komposition“ aus zwei Elementen 4, b in be-

stimmter Reihenfolge ein Element ab des Systems entspringt; in solcher
Weise, da8

1. das assoziative Gesetz gilt: (ab)e = a(be);

2. ein ,Einheitselement“ 1 existiert, das die Gleichung 18 = 1
=— & fiir jedes Element s der Gruppe erfiillt; und daB

3. zu jedem Element a ein inverses a—1 vorhanden ist mit der
Eigenschaft aa—! — a—1a — 1.
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Die Gruppe der unitiren Abbildungen erscheint dann als eine Verwirk-
lichung oder Darstellung der abstrakten Gruppe, welche dadurch zu-
stande kommt, dal jedem Gruppenelement s eine unitire Abbildung U(s)
in solcher Weise zugeordnet ist, daf allgemein

UE)U@E) = U(st) (16)
gilt [es folgt daraus sofort U(1) = 1]. Da das Gruppenschema aus der
Darstellung abstrahiert wurde, ist die Darstellung getreu, d. h. ver-
schiedenen Elementen entsprechen verschiedene Abbildungen U, oder,
was dasselbe besagt, U(s) ist = 1 nur fiir s = 1. Die Gruppe der uni-
tiren Abbildungen ist reduzibel, wenn in dem Vektorraum R,, in
welchem sich die unitiren Abbildungen abspielen, ein linearer Unter-
raum R, existiert mit einer Dimensionszahl m > 0, aber < n, der
gegeniiber allen U(s) invariant ist. Die Vektoren, welche zu allen in
N, gelegenen senkrecht sind, bilden einen linearen Unterraum R, . ,.;
und es ist R, — R, + Rn—n in dem Sinne, daf sich jeder Vektor auf
eine und nur eine Weise in zwei Komponenten spalten 148t, von denen
die erste R,,, die zweite R,_,, angehort. Weil die U(s) unitire Trans-
formationen sind, lassen sie aufer R, auch R,__, invariant: Die Dar-
stellung zerfillt in eine m-dimensionale und eine (% — m)-dimensionale.
‘Wihlt man das normale Koordinatensystem e; so, dafl die ersten m Grund-
vektoren den Raum $R,, aufspannen, die letzten » —m aber den Raum
R._n, so kommt dieser Zerfall an den Koeffizientenmatrizen U(s) un-
mittelbar zum Ausdruck. Man kann sich danach auf die Aufsuchung
der irreduziblen Darstellungen beschrinken. Fiir irreduzible Dar-
stellungen gilt der wichtige Satz: Ist die unitire Matrix 4 mit allen
U(s) vertauschbar: A4 U(s) == U(s)4, so ist A = &1 Multiplum der Ein-
heitsmatrix 1. [Es ist dabei sogar unwesentlich, dag die U(s) eine Gruppe
bilden.]

Wir denken in erster Linie an endliche Gruppen. Zu jeder
Gruppe gehort eine bestimmte ,GriB8enalgebra“. Kine Grofle im
Gruppengebiet wird dadurch gegeben, daB jedem Gruppenelement s
eine Zahl £(s) zugeordnet wird. Die GrioBen haben demnach so viele
Zahlkomponenten, wie es Gruppenelemente gibt, sie sind sozusagen die
Vektoren im Gruppenraum, in dem jedes Element eine Dimension, einen
Grundvektor bedeutet*. Die Grofe & mit den Komponenten £(s), die
danach symbolisch mit > £(s).s bezeichnet werden mag, erscheint in

* Den in der mathematischen Literatur gebriuchlichen Namen Gruppenzahl
vermeide ich, weil ich das Wort ,Zahl* fiir die gewshnlichen Zahlen reservieren
mochte.
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der Verwirklichung der Elemente s durch die unitiren Abbildungen U(s)
als &io Matrx X = SO U6 a7
8

Bildet man das Produkt zweier solcher Matrizen X, Y, welche zu den
Grofen £ und % gehbren, so entsteht wiederum eine Matrix Z, die zu
einer bestimmten, durch £ und # determinierten Griofle ¢ gehort. Denn
es ist

Z=XY = tEt, TOUHEDE) = t,Et Ut E@) ()
= ; T@E)EG) £6) =“§85(t)n(t')- (18)

Die Summe in (18) erstreckt sich iiber alle Paare von Elementen i, ¢/,
deren Kompositum £¢' == s ist. Man kann sie als einfache Summe iber
alle Gruppenelemente #, aber weniger symmetrisch auch so schreiben:

£@ = tzé(st“)n(t) = ;E(t)n(t_ls)'

(18) ist also das Multiplikationsgesetz der GréBen im Gruppen-
gebiet. Die Grifen konnen danach, in genauer Anschmiegung an die
zugehtrigen Matrizen, addiert werden, mit Zahlen multipliziert
und untereinander multipliziert werden; in solcher Weise, daB die
wichtigsten algebraischen Axiome erfiillt bleiben. (Nur das kommutative
Gesetz der Multiplikation und das Axiom, welches Nullteiler ausschlieft,
gelten nicht.)
Die Grofle £ heifit reell, wenn ihre Komponenten der Gleichung
£ = £ (19)
genfigen. Die zugehorige Matrix X ist dann Hermitesch. Denn aus
UG UG Y) = 1 zusammen mit U*()UE) = 1
folgt U*(s) = U(s—1). Darum gilt, unter der Voraussetzung (19),

X* = ;5@ U*(s) = ggcs—l) U@ = 2&@ Us) = X.

Den Bereich der reellen Grofen verluft man nicht durch Addition, Multi-
plikation der Grofen untereinander und durch ihre Multiplikation mit
reellen Zahlen*.

Fir uns kommen vorzugsweise die Abelschen Gruppen in Be-
tracht, bei welchen die Komposition der Elemente kommutativ ist:

* Von der npatiirlichen und wichtigen Rolle, welche diese Begriffe in der
Darstellungstheorie spielen, die sich nachher auch als die grundlegenden in der
Quantenmechanik herausstellen werden, kann man nur einen Eindruck gewinnen
dorch das Studium dieser Theorie. Es sei insbesondere verwiesen auf: F. Peter
und H, Weyl, Math. Ann. 97, 737, 1927.

Zeitschrift fiir Physik. Bd. 46. 2



62

18 H. Weyl,
st =ts. Eine endliche Abelsche Gruppe besitzt eine Basis a,, ay, .. ., ay.
Das sind f Elemente der Gruppe mit folgenden Eigenschaften: Be-
deuten Ay, h,, ..., kb, ihre Ordnungen, so erhilt man alle Gruppenelemente
in der Form

s == dai'az’... a;f, (20)
wenn #; ein volles Restsystem mod. k;, z. B. die Zablen 1, 2, ..., &,

durchlduft. (Ordnung  eines Elementes a ist der niederste Exponent,
fiir welchen o gleich dem Einheitselement { ist.) Die Auswahl der
Basiselemente kann so normiert werden, daB %, ein Teiler von %, h, ein
Teiler von h,, ..., h; ein Teiler von h;_, ist. Unter diesen Umstdnden
ist die Zahl der Basiselemente und die Teilerreihe (h,, hy, ..., ;) ihrer
Ordnungen eindeutig durch die Gruppe bestimmt. Jene Teilerreihe
charakterisiert umgekehrt vollstindig die Struktur der Gruppe.

Die Aufsuchung der irreduziblen Darstellungen einer Abel-
schen Gruppe ist sehr einfach. Da némlich die unitiren Matrizen U(s)
in diesem Falle vertauschbar sind, kann man sie nach einem oben er-
wihnten Satz alle gleichzeitiz ,auf Hauptachsen bringen“; die Dar-
stellung zerfillt also in lauter eindimensionale, es gibt nur eindimensionale
irreduzible Darstellungen:

& = &(s). .
Dabei ist die Abhingigkeit der Zahl &(s) vom Gruppenelement s so zu
beschreiben: Dem Basiselement a,; korrespondiert eine h;-te Einheits-
wurzel g, und es ist fiir (20):
e(s) = &' ex’... &
(Charaktere einer Abelschen Gruppe).

Aber das Darstellungsproblem stellt sich fir uns in etwas anderer
Gestalt, als es bislang besprochen wurde. Denn in der Quantenmechanik
haben nicht die Vektoren eine Bedeutung, sondern lediglich die Strahlen;
sie kennzeichnen die verschiedenen reinen Fille. Wir gehen also zu
dem homogenen Standpunkt iiber, fiir welchen die unitire Matrix U
nicht eine Abbildung des Vektor-, sondern des Strahlenkorpers bedeutet
und demgemiB mit der Abbildung ¢ U zusammenfillt. So soll das Wort
Darstellung in Zukunft verstanden werden: als getreue Darstellung
durch Drehungen des Strahlenksrpers* Die charakteristische
Forderung lautet nunmehr:

U()UE) ~ U(st). (21)

* Tiefgehende Untersuchungen iiber das Darstellungsproblem in diesem Sinne
hat I. Schur angestellt: Crelles Journ. 127, 20, 1904 und 132, 85, 1907,
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Wir konnen den willkiirlichen Faktor & in jedem U(s) nach Gutdiinken
fixieren (,Eichung“). Als Gleichung wird dann (21) so zu lesen sein:

U@B) U@ = §(s,t) U(st),

wo O eine von s und ¢ abhidngige Zahl vom absoluten Betrag 1 ist. Die
Angabe einer Grofe § im Gruppengebiet ist relativ auf die benutzte Eichung;
wird die Eichung gem#B der Formel U(s) - &(s) U(s) verdndert, so
miissen die Komponenten £ (s) jeder GréBe £ ersetzt werden durch s~ (s) £ (s).
Das Multiplikationsgesetz lautet

@) = 28GNEO M)

Die Beschreibung (19) der reellen Gréfien £ ist nur dann zutreffend, wenn
die Eichung so eingerichtet wurde, da U(s—1) — U—1(s) ist. Fiir eine
irreduzible Darstellung gilt nach wie vor der Satz: Ist die feste Drehung A
mit allen U (s) vertauschbar, A—21U(s) A — U(s), so ist A~ 1.

Die eindimensionalen Darstellungen verlieren jetzt jedes Interesse;
denn die einzige eindimensionale Drehung ist die Identitit. Aber im
gegenwirtigen Sinne gibt es auch fiir Abelsche Gruppen mehr-
dimensionale irreduzible Darstellungen. Nicht freilich, wenn die
Abelsche Gruppe zyklisch ist, aus den Wiederholungen eines einzigen
Elementes o besteht:

1,a,a%..., a2 (a* = 1).

Denn ist A die @ korrespondierende Matrix in der Darstellung, so ist

h
A4h — ¢1. Indem man A durch den Zahlfaktor Ve dividiert, erreicht
man eine solche Eichung des 4, daf A4* =— 1 wird. - Dann bilden aber
die Potenzen von A eine Darstellung der zyklischen Gruppe im alten
inhomogenen Sinne. Wir illustrieren daher das Gesagte durch die
einfachste nicht-zyklische Abelsche Gruppe. Das ist die Vierergruppe.
Sie besteht aus vier Elementen 1, a, b, ¢, und ist beschrieben durch die
Kompositionsregel
a2 = b — 2 —= 1,
be =c¢b=4a, c¢a=ac=h, ab = ba = c.

Eine irreduzible mit ihr isomorphe Drehungsgruppe ist die folgende B:

f1 o 0 1
01

vm = 10

!

wo=[} 9] vo=

U(c)zi]l _3 3 . 22)
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Die Eichung ist so gew#hlt, da8 U?(a) oder U(a) U(a—1) = 1 ist und
Entsprechendes fiir die tibrigen Elemente gilt. Die ,reellen Grofen®

el+Ea+ b+ e (23)
sind also jene, deren Komponenten g, £, %, reelle Zahlen sind. Ihre
Algebra ist die einfachste nicht-kommutative, welche existiert: die der
Quaternionen (genauer derjenigen Quaternionen, von denen die
skalare Komponente reell ist, die drei vektoriellen rein imaginir). In der
Darstellung B erscheint die Grofe (23) als die Matrix

9 + §1 n + 4§
n — i§, o—§

Die Irreduzibilitdt geht ohne weiteres daraus hervor, daf zwischen den
vier Koeffizienten dieser Matrix, wenn g, §, %, £ als Variable betrachtet
werden, keine homogene lineare Relation mit konstanten Zahlkoeffizienten
besteht. Wir kennen dieses Beispiel schon vom magnetischen Elektron
her. Allgemein werden wir erkennen, daf eine irreduzible Abelsche
Drehungsgruppe im Strahlenkirper der reinen Fille der Kinematik eines

X =

physikalischen Systems zugrunde liegt; die reellen Groflen in diesem
Gruppengebiet sind die physikalischen Gréfen des Systems.

Innerhalb einer A belschen Drehungsgruppe gilt fiir die (irgendwie
geeichten) Matrizen zweier Drehungen 4 und B eine Gleichung

AB = ¢BA. 24)
Wir haben uns zu iberlegen, in welcher Weise sie erfillt sein kann.
Bildet man auf beiden Seiten die Determinante, so ergibt sich &® = 1,

& ist also eine n-te Einheitswurzel. Ferner erhilt man durch Induktion

fir k= 1,2,3,...:
kB — gt B Ak,
ebenso 4 B4 (25)
AB! = B!A4.
Kombiniert man beide Gleichungen, indem man die zweite anf 4* und B
statt auf 4 und B anwendet, so erbilt man die allgemeinere Regel

AkBl — gkl Bl A, (26)
Weiter notieren wir die Gleichung
k(k+1)
(ABYf =—= ¢ 2 .Bk4E 27)

Sie folgt sogleich durch Schluf von % auf & + 1, indem man die erste
Formel (25) heranzieht. Setzen wir in (25) insbesondere ¥ = #, so
kommt A"B = BA®». Wenn die Abelsche Drehungsgruppe irreduzibel
ist, erschlieBt man aus dieser Vertauschbarkeit von A" mit allen Gruppen-
elementen B: 4"~ 1. Die Ordnungen aller Elemente einer irre-
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duziblen Abelschen Drehungsgruppe in # Dimensionen sind
demnach Teiler von n.

Liegt eine endliche Abelsche Gruppe in abstracto vor, (20), so wird
man zur Aufsuchung ihrer getreuen irreduziblen n-dimensionalen Dar-
stellungen folgendermafen verfahren. Fiir jedes Basiselement, z. B. ¢, == a
von der Ordnung h, — h, eicht man U(a) =— A in solcher Weise, daf
Ak — 1 ist. Nachdem dies geschehen, eiche man U(s) fiir das Element (20)
durch die Festsetzung

U(s) = Af* A% .. Af".
Es kommt nun wesentlich auf die Bestimmung der Kommutatorzahlen g;;
in den Gleichungen
A Ay = e dy; G >k L, k= 1,2,..,1) (28)
an. Da aus (28)
ANA, = &l AD,
das ist B
4, = &34,
folgt, mub ;5 eine h;-te Einheitswurzel sein.

§ 6. Ubertragung auf kontinuierliche Gruppen. Eine
infinitesimale unitire Abbildung ist eine solche, welche unendlich
wenig von der Identitit abweicht, durch die also alle Vektoren
¢ = (#;) nur unendlich kleine Anderungen dy = (d#;) erfahren. Der
analoge Begriff fiir reelle orthogonale Abbildungen des dreidimensionalen
Raumes ist aus der Kinematik des starren Korpers geldufig: bei der
kontinuierlichen Drehung eines Kreisels wird von Schritt zu Schritt eine
infinitesimale Drehung vollzogen. Ein anderes einfaches Beispiel ist der
Prozef der kontinuierlichen Verzinsung zu festem Zinssatz, der eine
GriBe  in jedem Zeitelement d¢ mit dem Faktor 1 + ¢dt multipliziert,
ihr also den Zuwachs dx == cxdt erteilt. Der Erfolg wird sein, daf sie
im Zeitraum ¢ von x auf ¢°’.x angewachsen ist. Um die umnendlich
kleinen Grofen zu vermeiden, ist es auch hier zweckmiBig, eine (rein
fiktive) Zeit ¢ einzufithren und daher die infinitesimale unitéire Abbildung
in der Form zu schreiben

T=10 =S 29)
Die Forderung, daf >, ,;%; invariant bleiben soll, driickt sich in der
Gleichung aus

az .. dz - =
2 xkf'l‘ Zy 'd—k> = 0 oder 2 (Cer + Crg) 3@ = 0.
= T T ik
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Die Hermitesche Form auf der linken Seite kann aber nur dann
identisch in den z; verschwinden, wenn alle ihre Koettizienten Null sind.
So ergeben sich die Bedingungen der schiefen Symmetrie

Cri = — Cip, C* = —C.
Setzt man C = i 4, so ist 4 eine Hermitesche Matrix. Resultat: Mit

jeder Hermiteschen Form 4 ist in unitir-invarianter Weise
(vgl. § 1) die infinitesimale unitire Abbildung

dr _ .
iz = iv A

verbunden. Der Satz von der Hauptachsentransformation der Hermite-
schen Formen stellt sich dadurch als der infinitesimale Grenzfall des
entsprechenden Theorems fir unitdre Abbildungen heraus. Diejenigen
infinitesimalen Abbildungen. welche alle Strahlen ungedndert lassen,
haben die Form dy .
d_‘z;' == %Y,

mit einem reellen Zahlfaktorc. Der bomogene Standpunkt verlangt also
hier, daB 4 nicht von A - ¢ 1 unterschieden wird.

Indem man in jedem Zeitelement dr die gleiche infinitesimale
unitdre Abbildung (29) wiederholt, erhilt man durch Integration von (29)
1) = U ().

U(v) ist die endliche Drehung, welche im Zeitraum z vor sich geht. Es
ist natiirlich U@+ 7) = U@) UE).

Die U(z) bilden also eine einparametrige kontinuierliche Gruppe; gegen-
iber der Zusammensetzung verhialt sich der Zeitparameter v additiv,
Vgl. den oben geschilderten Proze8 der kontinuierlichen Verzinsung! Die
Integration von (29) kann in der gleichen Weise vorgenommen werden
wie in diesem einfachsten Fall. Unter Benutzung einer gegen oo streben-

den ganzen Zahl m zerlegt man die Zeit ¢ in Elemente 'r% In jedem
der m Zeitelemente erfihrt ¢ die Transformation 1 4- % C; daher ist

U(r) = lim (l -+ r_mg>m: e*C.

m=oco
Die Konvergenz kann ebenso leicht bewiesen werden wie im eindimen-
sionalen Fall, wenn C eine Zahl ist. Auch ergibt sich die Potenzreihe

2
U@ =1+5C+50+ - (30)
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Eine andere Methode ist die sukzessive Approximation; sie setzt nicht
voraus, daB C von 7z unabhingig ist. Als nullte Approximation wird
das fir ¢ = O vorgegebene r genommen, allgemein wird die I-te aus der
(1 — 1)-ten Anndherung mittels der Gleichung

P =0 zu yk) =z "I‘(_!.&'l—l(‘ﬂ)odf

bestimmt. Die Anndberungen r;(z) konvergieten mit I > oo gegen die
gesuchte Grenze ¥ (7). Es ergibt sich fiir y(r) eine unendliche Reihe:

12 © J.I ' .f Cx)C(xy)...C(xpdr,dr,...dy. (81)
=0

' En=EnsS ==

Bei zeitunabhingigem C kommt wieder die Gleichung (30) heraus.

Eine Zwischenbemerkung: Es wurde erwihnt, dag in der Physik
meist Formen mit unendlich vielen Variablen eine Rolle spielen.
Die Theorie der Hermiteschen Formen von unendlich vielen Verinder-
lichen unter dem EinfluB unitirer Transformationen wurde von Hilbert
und Hellinger entwickelt, unter der Voraussetzung, daf die Form be-
schrinkt ist, d. h. daf eine Konstante M existiert, unter der die Werte
der Form ijhrem absoluten Betrage nach fiir alle Vektoren vom Betrage 1
bleiben*. Die in der Physik vorkommenden Formen geniigen dieser
Bedingung nicht. Eine Erweiterung der Theorie, welche den physikalischen
Anforderungen geniigt, hat v. Neumann a. a. O. in Aussicht gestellt.
Es ergibt sich hier die Aufgabe, das Analoge fiir die unitiren Abbildungen
zu leisten. Fiir sie wird die Theorie wesentlich befriedigender ausfallen,
weil keinerlei spezielle, die Konvergenz garantierende Voraussetzungen
zu machen sind, wie es die Hilbertsche Annahme der Beschrinktheit
war. Denn der Begriff der unitiren Abbildung bringt es mit sich, daf
in der Matrix die Quadratsumme der absoluten Betrige jeder Zeile und
jeder Spalte konvergiert, ndmlich — 1 ist. (Die mathematische Durch-
fithrung soll an anderer Stelle gegeben werden.) Der integrale Standpunkt
ist in begrifflicher Hinsicht dem infinitesimalen immer iberlegen, er 148t
zugleich die natiirlichen Grenzen der differentiellen Begriffsbildungen
erkennen. In diesem Sinne ist es zweckmifig, da mit einer Grofe o ja
immer auch ihre reellen konstanten Multipla ke als physikalische Grofen
auftreten, diese zu ersetzen durch e¢/*%, die Hermiteschen Matrizen %A

* D. Hilbert, Grundziige einer allgemeinen Theorie der Integralgleichungen,
Leipzig 1912, insbesondere IV. Abschnitt. E. Hellinger, Crelles Journal 186,
1, 1910.
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durch die unitiren ¢®4. Mit 4 erscheinen sie zugleich auf Hauptachsen
transformiert, wobei an Stelle der a, die Zahlen ¢'¥% als Eigenwerte sich
ergeben.

Doch nun zu den unendlichen Gruppen! Eine unendliche
Gruppe kann diskontinuierlichen Charakter haben, wie die in der Lehre
von der Kristallstruktur auftretende Gruppe der Gittertranslationen des
Raumes, deren Komponenten in bezug auf die drei Achsen z, y, 2z ganze
Zahlen sind. Es konnen auch gemischte kontinuierlich-diskrete Gruppen
vorkommen, wie die Gruppe aller Raumtranslationen, deren z-Komponente
ganzzahlig ist. Doch haben wir jetzt insbesondere die kontinuierlichen
Gruppen im Auge. FEine solche denkt man sich nach S. Lie erzeugt
durch ihre infinitesimalen Elemente. Ist die Gruppé eine f-para-
metrige kontinuierliche Mannigfaltigkeit @, so sind die infinitesimalen
Elemente die Stellen auf der Gruppenmannigfaltigkeit, welche der
Einheitsstelle 1 unendlich benachbart sind, oder die von 1 ausgehenden
Linienelemente. Sie bilden also eine f-dimensionale lineare Maunnig-
faltigkeit. Halten wir uns sogleich an die Darstellung, an die konkreten
unitiren Abbildungen statt an die abstrakten Elemente, so haben wir
mithin eine f-dimensionale lineare Schar schiefer Matrizen vor uns:

g: C,de, + Cydé,+ -+ Crdoy, (32)
innerhalb deren C,, C,, ..., C, eine willkiirlich gewahlte Basis ist und
die Zahlparameter d@,, dd,, ..., 40, aller reellen Werte fdhig sind.

Setzt man in (32) de6; = o;dr und iteriert diese infinitesimale Ab-
bildung, die man sich im Zeitelement d¢ vollzogen denkt, so gelangt man
nach Ablauf der Zeit 7, wenn an Stelle von o;t jetzt wieder 6; ge-
schrieben wird, zn

U(6y, Gyy - Op) == e1C1T0A 40 (33)
Innerhalb der infinitesimalen Gruppe g gibt sich die Komposition an den
Parametern d¢ als Addition kund. Es kénnte darum so scheinen, daB
jede lineare Schar (32) eine f-parametrige kontinuierliche Gruppe nach
der Formel (33) erzeugt. Das ist aber nicht der Fall, wie die folgende
Betrachtung lehrt, die nach dem Muster bekannter Integrabilitits-
iiberlegungen verlsuft. Sie nutzt fiir die infinitesimalen Elemente die
Tatsache aus, da8 mit zwei Abbildungen U, V auch der Kommutator
UVU—1V—1 in der Gruppe enthalten sein muB. Sind also C, C’ zwei
in der Schar g vorkommende Matrizen, so gehdren die infinitesimalen

Abbildungen
dy = Cdy und d'y = C'd7
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zur Gruppe. Fihrt man sie beide hintereinander aus, das eine Mal in
der Reihenfolge d,d’, das andere Mal in der Reihenfolge d',d, so ist die
Differenz der dadurch aus p entstehenden Vektoren
Ay = dd'y—ddy = (CC'— C'C) drd7.

Diese infinitesimale Abbildung ist der gesuchte Kommutator. Infolge-
dessen mul mit ¢ und C' auch immer CC' — C'C der Schar g angehoren.
An der Basis formuliert, heiBt das, dafi die Matrizen C;C, — C,C, sich
livear mittels reeller Zahlkoeffizienten aus C,, C,, ..., O; kombinieren
miissen. Diese von Lie aufgestellte Bedingung, deren Herleitung leicht
streng zu machen ist, ist nicht nur notwendig, sondern auch hinreichend *.

Die Gruppe ist Abelsch, wenn der Kommutator irgend zweier
Elemente gleich 1 ist. In diesem Falle miissen die Matrizen C; den
Gleichungen

CC,— (0= 0 B34
geniigen, d. h. sie miissen vertauschbar sein. Fiir zwei vertauschbare
Matrizen 4 und B gilt
eA+B — ¢4 ¢B,

das ergibt sich genau wie fiir Zahlen. Die Gleichung (34), d. i die
Vertauschbarkeit der infinitesimalen Elemente, geniigt also, wie das
eigentlich selbstverstindlich ist, um den A belschen Charakter der ganzen
Gruppe sicherzustellen, es gilt auf Grund von (34)

U(6y,65r--67) UTy,Tgy-- %) = U(6; + 7,6, + T,,..., 67+ 1)
Jede f-parametrige Abelsche Gruppe ist danach isomorph mit der Gruppe
der Translationen in einem f-dimensionalen Raume. Die C; spielen eine
analoge Rolle wie die Basis bei den endlichen Abelschen Gruppen.

Wir werden es zwar mit einer Abelschen Gruppe zu tun haben,
aber die Abbildungen sind als solche des Strahlenkérpers zu verstehen.
Uberall ist das Zeichen — zwischen unitiren Abbildungen durch ~ zu
ersetzen. An Stelle der Bedingungen (34) treten danach solche von
der Form

OM C,— 0,0 = icy, L
Cuy ist ein schiefsymmetrisches System reeller Zahlen. Der Kommutator
der infinitesimalen Abbildungen mit den Matrizen
‘st 4=0,C+--+06C uwd B=r1C+- -+
is
AB —BA =4 >,0,,6,7. L
v

* (Genaueres ist etwa nachzulesen bei: H. Weyl, Mathematische Analyse des
Raumproblems, Berlin 1923, S.33—36, und die dazu gehorigen Anhinge.
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Die schiefsymmetrische Form
2 CuyOuTy == h (61 '5),

v

welche eine von der Basis unabhingige Bedeutung hat, nenne ich die
Kommutatorform. Wendet man (26) an fiir eine gegen oo konver-

. A
gierende Zahl ¥ = ! == m und 1 4 e 1 +§ an Stelle von A und B,

so erhilt man im Limes als den Kommutator irgend zweier Elemente der
Gruppe U(6,,06,,-..,6y) = U(6) und U(z):

U(6) Ux) U=1(6) U—*(z) = e(h(6,7)). 1. (35)

[Um der Leserlichkeit willen schreibe ich oft e(x) statt ez.] Dieselbe
Einsetzung in (27) mit nachfolgendem Grenziibergang liefert noch

U@ +1) =¢e(3h(6,2) U@ UEG) = e(—3h(6,v)U@©G)U®).

Wenn die Drehungsgruppe irreduzibel ist, kann ein festes U(g)
nur dann mit allen U(z) vertauschbar sein, wenn es ~ 1 ist, d.h. wenn
die Parameter ¢; verschwinden. Das besagt, daf die Kommutatorform
nicht-ausgeartet ist, namlich fiir ein festes Wertsystem ¢; nicht identisch
in 7; verschwinden kann, ohne daf alle g; == 0 sind. (Es kommt das
darauf hinaus, daf die Determinante [¢;;| 9= O ist.) Eine solche Form
existiert nur, wenn die Variablenzahl f gerade ist, und ihr kann durch
geeignete Wahl der Basis (dadurch, daf die Variablen @; und z; kogredient
einer geeigneten linearen Transformation unterworfen werden) eine

numerisch eindeutig bestimmte Gestalt verlichen werden : Die Koeffizienten-
|
, die sich

1
—1 0
lings der Hauptdiagonale aneinanderreihen. Es ist dann zweckmiBiger,
2f an Stelle von f zu schreiben, die so eingefithrte ,kanonische

matrix |[¢;z|| zerfallt in lauter zweireihige Quadrate

Basis“ mit

iP,i@Q, (=12 ...,,f)
zu bezeichnen und die zugehorigen kanonisch gepaarten Parameter mit
G,, T, Der Faktor 4 ist beigefiigt, um auf Hermitesche Formen P,, @,
zu kommen. Es gelten die Vertauschungsrelationen

(P @ — @, P) =1, i1 (P, Q, — Q,P") — 0 fiir @ =+ v,
und (36)
-P,u-Pv—'PvP‘u =0, Q,u Q@ — @ Q,u = 0 fiir alle ¢ V.
Die
U(G) — 6(61P1 +62P2 4o GfPf)



71

Quantenmechanik und Gruppentheorie. 27

bilden fir sich eine f-parametrige Abelsche Gruppe unitarer (Vektor-)
Abbildungen, ebenso die

V) = e @+ 18+ - + 77
Hingegen ist
U@ V@U@ V1(r) = (6,7, + -+ + 6/7p). 1
e(@ P4 o+ 6P+ 1,Q 4+ - + 7@

f !
— e(% > 6m> V(@) U(e) = e(—— —é— > 6m-> U@ VE. 37

i=1 t=1

und

§ 7. Ersatz der kanonischen Variablen durch die Gruppe.
Das Elektron. TUnsere Entwicklungen sind bis zu dem Punkte ge-
diehen, wo die Verbindung mit der Quantenmechanik in die Augen
springt. Liegt ein mechanisches System von f Freiheitsgraden vor, so
geniigen ja die Hermiteschen Matrizen, welche die kanonischen Variablen
reprasentieren, gerade den Relationen (36), bis auf den Faktor /2w, von
dem noch die Rede sein wird und den wir einstweilen in die Mafeinheiten
hineinstecken. Nehmen wir die Zahl der Freiheitsgrade f zundchst — 1
und bezeichnen in der iiblichen Weise die kanonischen Variablen mit p, g,
ihre reprisentierenden Formen mit P, @, so sagt die Relation

iPQ—QP)=1 (38)
aus, daB die beiden durch die Matrizen ¢ P, i @ gekennzeichneten infini-

tesimalen Drehungen dés Strahlenkdrpers vertauschbar sind. Die durch
sie erzeugte Abelsche Drehungsgruppe besteht aus den Drehungen

U, v) = ¢(Ps + Q) 39)
(6, © reelle Parameter, die sich bei Zusammensetzung additiv verhalten).

Die reelle Gréfe im Gruppengebiet, deren Komponenten £ (6, 7) der
Gleichung (19) oder

E@ ) =E(—06 — (40)
geniigen, erscheint als die Hermitesche Form
+ oo
F=([e®o+ @n¢(@ndadr. (41)

Eine physikalische Grofe ist durch ihren Funktionsausdruck f(p, ¢)
in den kanonischen Variablen p, ¢ mathematisch definiert. Es blieb ein
Problem, wie ein derartiger Ausdruck auf die Matrizen zu iibertragen
war. Ohne weiteres klar war das nur fiir die Potenzen p¥, ¢! und damit
fir Polynome. Freilich trat schon hier die Schwierigkeit auf, daB man
nicht wuBte, ob man einen Term wie p? ¢ als P? @ oder Q P? oder P @ P usw.
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zu interpretieren hatte. Der Ansatz ist offenbar viel zu formal. Unsere
gruppentheoretische Auffassung zeigt sogleich den rechten Weg: die
Hermitesche Form (41) reprisentiert die Grofle

+ oo
fw, 0= [[e@o+an§@, Ddodr (42)

Nach dem Fourierschen Integraltheorem 148t sich ja jede Funktion
f(p, ¢) in dieser Form eindeutig entwickeln, und wenn f eine reellwertige
Funktion der reellen Verinderlichen p, q ist, geniigt & (6, 7) gerade der
Bedingung (40). Die Integralentwicklung (42) ist nicht immer ganz
wortlich zu verstehen; das wesentliche ist nur, daf rechts eine lineare
Kombination der e(pg 4 qv) steht, in denen ¢ und 7 beliebige reelle
Werte annehmen konnen. Wenn z. B. ¢ eine zyklische Koordinate ist,
die nur mod. 2z« zu versteben ist, so dafi alle in Betracht kommenden
Funktionen periodisch in ¢ mit der Periode 2z sind, wird die Integration
nach v ersetzt werden miissen durch eine Summation itber alle gunzen
Zahlen t; wir haben dann den Fall einer gemischten kontinuierlich-
diskreten Gruppe. Die Einschrinkungen, denen f(p, g) unterworfen sein
mufl, damit sie eine FEntwicklung des Typus (42) gestattet, konnten
noch Bedenken erregen. Nun wissen wir aber, da8 es eigentlich gilt,
e(kf(p, q)) so zu entwickeln (k irgend eine reelle Konstante), und in
dieser Fassung 146t sich die Aufgabe nach neuneren Untersuchungen von
N. Wiener, Bochner und Hardy in zwingender Weise eindeutig er-
ledigen *.

Die Ubertragung auf f Freiheitsgrade liegt auf der Hand. Inms-
besondere sahen wir, wie aus der Forderung der Irreduzibilitat
im Falle der kontinuierlichen Gruppen die charakteristische
kanonische Paarung entspringt. Fir endliche Gruppen {freilich
existiert nicht ein so einheitliches Schema. Das ist im Einklang mit den
physikalischen Tatsachen. Denn aus den Entwicklungen von P. Jordan®*
ging bereits hervor, daB beim magnetischen Elektron g, so gut wie g, als

# N.Wiener, On representations of functions by trigonometrical integrals,
Math. ZS. 24, 575, 1926; S.Bochner und G.H. Hardy, Note on two theorems
of N.Wiener, Journ. Lond. Math. Soc. 1, 240, 1926; S.Bochner, Darstellung
reell variabler und analytischer Funktionen durch verallgemeinerte Fourier- und
Laplaceintegrale, Math. Ann. 97, 635, 1927; vgl. dazu ferner die von H.Bohr
stammende Theorie der fastperiodischen Funktionen; am einfachsten bei H. Weyl,
Math. Ann. 97, 338, 1926,

*# 78. {. Phys. 4, 21—25, 1927. Nach P.Jordan, Uber die Polarisation
der Lichtquanten, ebenda, S.292, ist die Kinematik der Lichtquanten die gleiche.
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die ,kanonische Kunjugierte“ von 6, angesehen werden kann. Hbchstens
yon einem Tripel, nicht von einem Paar kanonisch konjugierter Grofen
ionnte hier verniinftigerweise die Rede sein. Bestitigen wir, dali gerade
quch in diesem diskreten, dem Kontinuierlichen am meisten entgegen-
gesetzten Falle unsere Formulierung genau das Richtige trifft! Sie lautet,
um das noch einmal zusammenzufassen, so: Der kinematische Cha-
rakter eines physikalischen Systems findet seinen Ausdruck
in einer irreduziblen Abelschen Drehungsgruppe, deren Sub-
strat der Strahlenkdrper der ,reinen Fille* ist. Die reellen
Grofen dieses Gruppengebietes sind die physikalischen
Grofen; die Hermiteschen Matfrizen, als welche sie vermdage
der Darstellung der abstrakten Gruppe durch Drehungen er-
scheinen, sind die Représentanten der physikalischen GrgBen,
deren Bedeutung im I Teil auseinandergesetzt wurde.

Nun: die frilher beschriebene zweidimensionale Drehungsgruppe B,
welche der Vierergruppe isomorph ist, kennzeichnet, wie der Vergleich
mit §2, (12) lehrt, die Kinematik des magnetischen Elektrons.
Da n = 2 ist, sind alle GroBen nur zweier Werte fihig. Die einzigen
physikalischen GrdBen, welche existieren, sind die mit Hilfe reeller Zahl-
koeffizienten gebildeten linearen Kombinationen von 1, 6, 6y, 6,. Aber
das maguetische Elektron ergibt sich nicht nur als Sonderfall der Theorie,
sondern die ihm eigentitmliche Kinematik ist tiberhaupt die
einzig mégliche, wenn alle Grofen nur zweier Werte fahig
sein sollen, wenn # = 2 isf. Beweis: Wir wissen schon, daf unter
dieser Voraussetzung jedes Gruppenelement o aufler dem Einheitselement
von der Ordnung 2 ist. Die beiden Eigenwerte der korrespondierenden
zweidimensionalen Matrix A sind daher entgegengesetzt gleich. Wihlen
wir ein bestimmtes a =f 1, so konnen wir das zugehtrige 4 samt einem
normalen Koordinatensystem so festlegen, daB

1 0
4 = 0 —1 (48)
wird. Die mit 4 vertauschbaren Matrizen U unserer Gruppe haben not-
wendig die Gestalt é S,H; wenn sie nicht ~ 1 sind, ist ¢ = —¢,

Ualso ~ 4. Es gibt Gruppenelemente, deren Matrix B nicht mit 4
vertauschbar ist. Wir wissen, da in der Gleichung

AB—gBA



74

30 H. Weyl,

¢ eine zweite Einheitswurzel, darum ¢ =—= — 1 sein muf. Daraus folgt,

daf B die Gestalt
0 b
B = Hb' o

(44)

hat. Die Zahlen b, b sind vom absoluten Betrag 1. Wir wihlen ein
bestimmtes solches B, das gemdf B? — 1 geeicht sei: bb =— 1. Aufler-
dem kann man b zu 1 machen, indem man das bisherige normale Koor-
dinatensystem e, e, durch e,, be, ersetzt; (43) wird dadurch nicht an-
gegriffen:

1o 1
B=|l] o “5)

“

Jede Matrix U unserer Gruppe, welche mit A vertauschbar ist, ist ~ 1
oder ~ 4. Wenn sie nicht mit A4 vertauschbar ist, hat sie die Form (44),
und demnach ist ihre Zusammensetzung U B mit dem durch (45) gegebenen.
bestimmten B eine Diagonalmatrix. Als solche ist sie mit 4 vertauschbar,
also ~ 1 oder ~ 4. Das Resultat ist, daf jedes U~~~ einer von den
vier Matrizen 1, 4, B, AB ist. Es liegt in der Tat die Vierer-
gruppe vor und die Darstellung B derselben.

§ 8. Ubergang zu Schrodingers Wellentheorie. In #hulicher
Weise, wie soeben der Fall # =— 2 behandelt wurde, wollen wir jetzt
zeigen, daf die zweiparametrigen kontinuierlichen Gruppen nur
einer irreduziblen Darstellung in unserem Sinne (aufler der identischen)
fahig sind. Wir erhalten jene Gruppen durch Grenziibergang aus den
zweibasigen endlichen. Die irreduzible Abelsche Drehungsgruppe
mit der Basis 4, B habe die Dimensionszahl ». In der Kommutator-
gleichung

AB = ¢BA (46)
ist ¢ eine n-te Einheitswurzel. Diese Gleichung gilt es jetzt niher zu
untersuchen. Die Kommutatorzahl & sei eine primitive m-te Einheits-
wurzel, d. h. & sei die niederste Potenz, welche — 1 ist; m ist Teiler
von #n. Die Drehungen A4, B sind von einer in 7 aufgehenden Ordnung:
Ar ~ 1, Br ~ 1, und die Matrizen knnen daher so geeicht werden, dab
Ar = B" =— 1 ist. Durch geeignete Wahl des normalen Koordinaten-
systems sei B aui Hauptachsen gebracht; die Glieder in der Haupt-
diagonale, b;, sind lauter n-te Einheitswurzelo. Die Gleichung (46)
Liefert fiir die Koeffizienten von 4 = ||a;p{|:

by

Eaik: €y (47)
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Man teile die Indizes ¢ und zugehorigen Variablen z; in Klassen
nach dem Prinzip, dal ¢ und % in dieselbe Klasse fallen, wenn der
Quotient b;/ by eine m-te Einheitswurzel, eine Potenz von g ist. Dies
ist wirklich eine Klasseneinteilung, da mit b;/by und by /b; auch b;/b, Potenz
von & ist. Gem#B der Gleichung (47) ist a;; = 0, wenn ¢ und % zu
verschiedenen Klassen gehoren; die Matrix A zerfallt demnach in der
gleichen Weise, wie die Indizes in Klassen zerfallen. Wegen der voraus-
gesetzten Trreduzibilitat ist also nur eine Klasse vorhanden.

Nachdem dies erkannt ist, gehen wir zu einer feineren Klassen-
einteilung iber: jetzt sollen i und % nur dann zur selben Klasse gehoren,

wenn b, = b, ist. Wir wihlen willkiirlich eine dieser Klassen, fiir
welche b; = b ist, als die erste, lassen dann als zweite diejenige folgen,
fir die b; = &b ist, darauf die dritte mit b; = &*b, ..., die m-te mit

b, = &m—1b; die (m | 1)-te Klasse: b, — ¢™b, ist wieder die erste. In
dieser Reihenfolge denken wie auch die Variablen angeschrieben und
numeriert. Nach der Gleichung (47) sind in der Matrix 4 alle Felder
@, k) leer, a;z = O, deren Zeilen- und Spaltenindex ¢ und % nicht zu
zwei aufeinanderfolgenden Klassen gehoren.

Die Matrix 4 hat daher das angedeutete ' N
Schema (Fig. 1), in welchem die nicht &
schraffierten Gebiete leer stehen und iibrigens
m = 4 angenommen wurde. In den schraf- @’
fierten Gebieten stehen die ,Teilmatrizen¥
AW, 4@ . A, Da A unitir ist, sum-
;mer:ez sth d11e abso;utfzn Quadrate der Glieder wk\(\
n jeder Zeile und in jeder Spalte zu 1.
Infolgedessen gilt das gleiche fiir die Zeilen
und Spalten der einzelnen Teilmatrix. Die Summe der absoluten Quadrate
aller in AW stehenden Glieder ist darum einerseits gleich ihrer Zeilen-,
andererseits gleich ihrer Spaltenzahl. Das Rechteck A® ist in Wahr-
heit ein Quadrat, die zweite Klasse besteht aus ebenso vielen Individuen d
wie die erste. Alle Klassen sind gleich stark, » = md. Danach
ist die Figur zu korrigieren. Genauer ist jede der schraffierten Teil-
matrizen fiir sich unitir, Indem wir auf die erste Klasse von Variablen
die unitdre Transformation mit der Matrix A® ausiiben, bewirken wir,
daf sich A® in die d-dimensionale Einheitsmatrix verwandelt. Diese
Normalform wird nicht zerstort, wenn man nachtréglich die Variablen
der ersten Klasse und ebenso die Variablen der zweiten Klasse, jede fiir
sich, der gleichen beliebigen unitiren Transformation unterwirft. Dies

X
\

Fig. 1.
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konnen wir dazu benutzen, um auch die zweite Teilmatrix in die Einheits-
matrix umzuwandeln; und so fort bis zur (m — 1)-ten. Die damit erzielte
Normalform wird nicht zerstort, wenn die Variablen jeder Klasse unter-
einander der gleichen unitdren Transtormation unterliegen. Diese Trans-
formation kann man schliefilich, wie man weiB, noch so bestimmen, daf
die letzte Teilmatrix A™ eine Diagonalmatrix wird. Nunmehr nehmen
wir eine Umnumerierung vor, indem wir zunichst aus jeder Klasse das
erste Glied anslesen, darauf aus jeder Klasse das zweite usf. Dann
zerfillt 4 in d Teilmatrizen, die sich ldngs der Hauptdiagonale aneinander-
reihen. Wegen der vorausgesetzten Irreduzibilitdt ist nur eine davon

vorhanden: d = 1, » = m. Wir haben die Normalform (die nicht aus-
gefiillten Felder ,steben leer):

0 1 &

0 1 £r+1
A = 1 , B — grt2 .

a 0 0 O. 0 gntr—1
Die Exponenten in B sind # aufeinanderfolgende ganze Zahlen, & ist eine
primitive n-te Einheitswurzel. Die Gleichung A" — 1 liefert endlich
noch ¢ — 1. Lassen wir die Variablennummern von r ab laufen und

verstehen alle Indizes mod. »#, so lauten die beiden Abbildungen:
A: wp = ®_q, B: z =— &txy.
Daraus sofort die Wiederholungen:
A% = xp_,, Bt zp = iy (48)

Jetzt 148t sich in aller Strenge der Grenziibergang zu kontinuier-
lichen Gruppen vollziehen. Es sei (39) die kontinuierliche zweipara-
metrige irreduzible Abelsche Drehungsgruppe. Die Basis ¢ P, i@ sei
nach (38) normiert. Wir identifizieren in unserer Betrachtung 4 mit
dem infinitesimalen ¢ (£P), B mit e(n @), £ und 7 reelle infinitesimale
Konstanten. Es ist e (6. P) = 4%, ¢(r Q) — B, wenn im Limes s{ — g,
ty = v wird. & fallt mit e(£y) zusammen, & ist == e (k7). e(z Q)
ist die Reprisentation der physikalischen Gréfe ¢i79; diese ist also (bet
beliebigem reellen ) der Werte fihig ef?é%, wo k die ganzen Zahlen
durchlguft. Mit anderen Worten: die GroBe g ist der Werte k£ fahig,
ihr Wertbereich das zusammenhéngende Kontinuum der reellen
Zahlen von — oc bis 4 oo. (Dabei ist k& freilich mod.n, k£ mod.n&
zu verstehen; aber n£ ist ein Multiplum von 2 z/y, folglich im Limes
unendlich groB.) Darum schreiben wir jetzt ¢ an Stelle von %§, unter
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g zugleich eine Variable verstehend, welche den Wertbereich der physi-
kalischen Grofe g durchlsuft, und VE. 9 (q) an Stelle von x,. 1 (q) ist
pine willkiirliche komplexwertige Funktion, welche der Normierungs-

flv@rdg=1 (49)
unterworfen ist. lhre Werte sind aufzufassen als die den verschiedenen
Werten von ¢ entsprechenden Komponenten eines ,reinen Falles* in dem-
jenigen normalen Koordinatensystem, das aus den Eigenvektoren der
GroBe g besteht. — An Stelle der zweiten Gleichung (48) erhalten wir
im Limes

gleichung

Y =19V ¢ (@ = y(g: (50)
das ist die unitire Abbildung V,, welche die Grofie ¢?*¢ darstellt. Der
gleiche Grenziibergang an der ersten Gleichung liefert die unitire Ab-
bildung

v =19U: 9@ =v(@—oa), (81)
welche €?9P reprisentiert. Beide Abbildungen sind in der Tat unitsr,
weil sie die Gleichung (49) invariant lassen; sie bilden, den verschiedenen
Werten von 6 bzw. 7 entsprechend, zwei einparametrige Abelsche Gruppen
linearer Funktionaltransformationen :

Uo+ o’ — UaUu’y V’t+'t' - szV'z’-
¥ U,V ist die Fuuktion €279. ¢ (¢ — 6), ¥ V, Uy aber — €7@, ¢ (¢ — ),
so daB, wie es sein muB, die Kommutatorgleichung gilt:

YUV, = &% ¢V, Uy.
Der Grofie e (6p 4 ©¢) entspricht nach (37) die Abbildung
V() > v (@ = et "y (g — o).
Geht man endlich auf die infinitesimalen Operationen zuriick — was

freilich im allgemeinen nicht zweckm#Big ist —, so bekommt man als
Reprisentation von
. d ]
p: 0¢ =1 Zl};@, von g¢: 0% == q.9(g). (52)

Damit sind wir bei der Schrédingerschen Fassung angelangt.
Die Eigenfunktionen 1, (¢q) seiner Wellengleichung haben danach die Be-
deutung, daB sie die unitire Transformation angeben, welche zwischen
den beiden Hauptachsensystemen der Grofe ¢ und der Energie E ver-
mittelt. Im Hinblick auf den ersten Teil ergeben sich daraus die be-
kannten Paulischen Ansitze fiir ihre Wahkrscheinlichkeitsbedeutung.
Die Ubertragung auf mehrere Freiheitsgrade ist mithelos durch-

fihrbar. Die Kinematik eines Systems, die durch eine konti-
Zeitschrift ftir Physik. Bd. 46. 3
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nuierliche Gruppe ausgedriickt wird, ist darum durch die Zahl
der Freiheitsgrade f eindeutig determiniert. Unsere Behandlung
ist giiltig auch fiir den Fall, daB die Grofe g eine zyklische Koor-
dinate ist, die nur mod. 2 z in Betracht kommt. Dann durchlivft 7 nur
die ganzen Zahlen, die Gruppe ist halb diskontinuierlich. Die Reprisen-
tationen (80) und (81) von ¢¢*? und ¢!9P bleiben bestehen; aber da z nur
ganzzahlige Werte annimmt, hat es keinen Sinn mehr, den Grenziibergang
t — 0 zu vollziehen. Eine ,physikalische Grifle ¢, welche durch eine
Hermitesche Form zu reprisentieren wire, gibt es tiberhaupt gar nicht,
wohl aber z. B. cosg.

Oft ist es zweckmilig, Koordinaten und Impulse zu vertauschen,
an Stelle der Komponenten 3 (g) der Vektoren die Komponenten ¢ (p)
im System der Eigenvektoren von p zu verwenden. Ihr Zusammenhang

ist der durch die ,Fouriersche Transformation*
4 ¢
¥ (@) = [ g (p)dp

gegebene *. Denn die Abbildung V, verwandelt 4 (¢) in
-+ o0 + 2o

Ieiq(ﬂ+’)q)(p)dp :J.eiqpcp(p——-z) ap,
U, aber in -7 o
+ o
J'eiqp.e—iapq;(p)dp.
Es ist also -
@ (.p) V't = lP(P '_"7)1 @ (]J) U, = e—iupq) (p) (53)

IIl. Teil. Das dynamische Problem.

8 9. Das Gesetz der zeitlichen Veranderung. Die Zeit-
gesamtheit. Die bisherigen Ansitze beanspruchen allgemeine Geltung.
Nicht so giinstig steht es mit dem dynamischen Problem, das eng
mit der Frage nach der Rolle zusammenhiingt, welche Raum und Zeit
in der Quantenphysik spielen. In der Feldtheorie werden Zustands-
gréBen behandelt, die in Raum und Zeit ausgebreitet sind, die Mech anik
im engeren Sinne hat es nur mit der Zeit als der einzigen unabhingigen
Verinderlichen zu tun. Die unabhingigen Verinderlichen sind keine

* Nach einem wichtigen Satz von Plancherel (Rend. Cire. Mat. Palermo 30,
330, 1910) und Titchmarsh [Lond. Math. Soc. Proc. (2) 23, 279, 1924] hat
diese Transformation fiir alle absolut quadratisch integrierbaren Funktionen einen
klaren Sinn und erhilt (bis auf den Faktor 2 =) das Quadratintegral.
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gemessenen Grofen, sie sind ein willkiirlich in die Welt hineingetragenes
gedachtes Koordinatenspinngewebe. Die Abhingigkeit einer physikalischen
GroBe von diesen Variablen ist also auch nicht etwas durch Messung zu
Kontrollierendes; erst wenn mehrere physikalische Grofen vorliegen,
kommt man durch Elimination der unabhingigen Verinderlichen zu Be-
siehungen zwischen beobachtbaren Grofen. Es mag sein, dal unter diesen
ZustandsgroBen die Raumkoordinaten eines Elektrons auftreten ; gemessener,
real markierter Ort und natirlich auch real markierte Zeit sind Zustands-
grofen und werden also durch Hermiteschen Formen zu reprisentieren
sein. Diesem Sachverhalt gegeniiber ist die nicht-relativistische Mechanik
in der glicklichen Lage, die Zeit als Zustandsgrofe ignorieren zu konnen,
wahrend die Relativititsmechanik parallel mit den meBbaren Raum-
koordinaten auch die meBbaren Zeitkoordinaten der Teilchen benttigt.
Eine vollstindige Durchfithrung der Quantentheorie liegt bisher nur in
dem Umfang vor, in welchem die Zeit als einzige unabhingige Variable
und die Zeit nur als unabhingige Variable auftritt.

Da die Hermitesche Form, welche zu einer physikalischen Grife

gehort, nichts zu tun hat mit besonderen Werten, welche die GroBe unter
Umsténden, insbesondere im Laufe der Zeit annimmt, bleibt sie von der
Zeit upberithrt. Was sich im Laufe der Zeit ¢ #ndert, ist allein der
reine Fall r (). Das dynamische Gesetz gibt die infinitesimale Ver-
schiebung an, die y (f) wahrend des Zeitelements d¢ erfahrt:
Hier ist 1Z die infinitesimale unitire Abbildung, welche mit der die
Energie reprisentierenden Hermiteschen Form E gekoppelt ist, & das
Wirkungsquantum. Die mit dem Vorriicken der Zeit um d¢ verbundene
Anderung 4 (v 4+ dr) — A () irgend einer Hermiteschen Form 4 (¥) ist,
wie man leicht ausrechnet,

dA — 2xidt

h
dE ist — 0. Bringt man die Hermitesche Form E der Energie auf
Hauptachsen:

EQ) = E, 2,2, + E,2,%, + +++ + Ep2, %y,
80 bezeichnen die Nummern 1 bis » die moglichen Quantenzustinde, E;

die zugehorigen Energiestufen, und in den Gleichungen (54) separieren
sich die Variablen:

(EA— AE). (55)

dw, 2miE,

@R
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Die Integration laBt sich sofort ausfithren:

2 A
() = xy,e<_’£“‘“>.

7 (56)

Die Hermitesche Form
AQ) = 2 ayy 2, B,
ist nach Ablauf der Zeit ¢ fibergegangen in
2 Oy Tu (€) 2y () = 2 auv(t) x,ui’v
mit
() = a,”.e@%ﬂ)-

Die Komponenten a,, im Hauptachsensystem der Energie fithren also
einfache Schwingungen aus mit den Bohrschen Frequenzen. Nach (56)
bleiben nicht nur die Energiestufen F, wihrend der Bewegung erhalten
sondern auch die Haufigkeiten |, (f)|* = |«,|*, mit denen sie vertreten sind.

Das bisher Gesagte gilt fiir ein abgeschlossenes System. Wenn
man innerhalb eines abgeschlossenen Systems ein Teilsystem ins Auge
taBt, das unter dem Einfluf des Restes steht, dessen Riickwirkung auf dep
Rest aber vernachlédssigt wird, so hat man den Fall der von auBien ein-
geprigten Krifte: die Hamiltonsche Funktion hiingt explizite von der
Zeit ab. Die Hermiteschen Formen, welche die Energie und andere
Grofén o am System darstellen, sind Funktionen der Zeit: 4 = A (t; 1).
Das Gesetz der zeitlichen Verschiebung des reinen Falles g (f) bleibt das
gleiche. Die Formel (31) in § 6 gestattet die integrale Aneinanderreihung
der von Schritt zu Schritt in der Zeit sich vollziehenden infinitesimalen
Drehungen (54). So berechne man die Drehung U (¢,, t,), welche von ¥ (#,)
zu yr(ly) fihrt. Findet die Einwirkung von auBen nur in dem Zeit-
intervall ¢,¢, statt, wihrend vor ¢, und nach #, das System abgeschlossen
ist, so entnimmt man der Matrix U(#,,?,) insbesondere, wie sich die
Wahrscheinlichkeiten fiir die verschiedenen Energiestufen K, durch dis
Einwirkung verschoben haben. Darauf bezieht sich die Untersuchung
von M. Born iiber das Adiabatenprinzip in der Quantenmechanik *,

Wenn die Zeit nicht melBbare GriBe, sondern nur unabhingige
Variable ist, haben nur solche Beziehungen konkrete Bedeutung, aus denen
die Zeit eliminiert ist. Tatbestinde von diesem Charakter sind in der
Quantenmechanik eines abgeschlossenen Systems: der Wertevorrab
welchen eine gegebene Grofe durchlaufen kann, und die zeitlichez
Mittelwerte der Wahrscheinlichkeiten W (r), mit denen eine gegebene

* 7S, f. Phys. 40, 167, 1927.
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@rofe Werte in gegebenen Grenzen annimmt. Handelt es sich um den

reinen Fall

T Z, == ¢ye(p,) €y == 0, p, reell),
o durchliuft r(f) nach (56), wenn die Energiestufen nicht speziellen
Jinearen Rationalititsbeziehungen geniigen, gleichmifig dicht das ganze

durch
|#,| = ¢y 'le = Cy .-y || =y

definierte Gebilde § von # reellen Dimensionen. In den Ausnahmefillen
reduziert sich die Dimensionszahl®. Zur Berechnung der zeitlichen
Mittelwerte ist iiber dieses gleichmiflig dicht von der Zeitkurve erfiillte
Gebiet O, die ,Zeitgesamtheit“, zu integrieren.

Ich erinnere noch kurz an die Beziehung der Energie und der
Hamiltonschen Gleichungen zu den kanonischen Variablen. Hat das
mechanische System einen Freiheitsgrad und ist eine Funktion (42) der
kanonischen Variablen p, ¢ reprisentiert durch die Matrix (41), so sind

gemif unserer Festsetzung die beiden Ableitungen % = fp 3—’; = f,

reprasentiert durch

4+ oo
F, = i”e(ap+zcz).ag(a,r)dadz,

+ oo
F, =iffe@P+19Q).1é(@7)dods,

da entsprechende Fourierentwicklungen fiir f, und f, gelten. Wegen (38)
ergibt die Kommutatorregel (835), wenn man U(z) wieder infinitesimal
werden 1iBt, die beiden Gleichungen

P.e(@P+1Q) —e(@P+1Q).P=r1.¢(6P+ 19Q),

Q.e@P+7Q)—e(@P+7Q).Q = —0.¢(6P + Q)

—F, = i(QF — F @), F, = i(PF—FP).
Das dynamische Gesetz (54) 148t sich daber, wenn f(p,q) die Energie-
funktion ist, nach (55) so fassen:
apP 2x ae 2z

- at = h
Daraus sieht man: wenn ¢ und b zwei reelle Zahlen vom Produkt 2/2 z
sind, reprasentieren ¢ P und & ¢ Grbfen, welche kanonisch sind in

also

.
T,

* Vgl. H. Weyl, Uber die Gleichverteilung von Zahlen mod. Eins, Math.
Amn. 77, 313, 1916.
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dem Sinne, daB fiir sie die klassischen Bewegungsgleichungen
gelten. Auf diese Weise wird in konkreten Beispielen die Bestimmung
der Energie als Griofe im Gruppengebiet durchgefithrt. Bei solcher
Beschreibung kommt das Wirkungsquantum nur einmal vor: in dem
dynamischen Gesetz und nicht in den Vertauschungsrelationen. Sie
basiert auf der Uberzeugung, dag die formalen Beziehungen der klassischen
Physik als solche zwischen den reprisentierenden Matrizen, nicht zwischen
den angenommenen Werten, bestehen bleiben.

Will man den geriigten Mangel des Zeitbegriffs der alten vor-
relativistischen Mechanik aufheben, so werden die mefbaren Gréfen:
Zeit t und Energie E, als ein weiteres kanonisch konjugiertes Paar aui-
treten, wie ja bereits das Wirkungsprinzip der analytischen Mechanik
erkennen l#8t; das dynamische Gesetz kommt ganz in Fortfall. Die
Behandlung eines Elektrons im elektromagnetischen Felde nach der
Relativitatstheorie durch Schrédinger u. a. entspricht bereits diesem
Standpunkt*. Eine allgemeine Formulierung liegt noch nicht vor.

§ 10. Kinetische Energie und Coulombsche Kraft in der
relativistischen Quantenmechanik. Innerhalb des Schemas, das
die Zeit nur als unabhingige Variable kennt, ist wenigstens eine halb-
relativistische Mechanik moglich, welche den richtigen Ausdruck fiir die
kinetische Energie verwendet, aber die potentielle Energie nach wie vor
als eine Funktion der Lagekoordinaten, und das Leifit doch genauer:
ijhrer simultanen Werte, annimmt. Zur Illustration der Theorie behandle
ich den Fall eines oder mehrerer Teilchen, deren Lage durch ihre recht-
winkligen Koordinaten x, y, # gekennzeichnet wird. Der Ausdruck der
kinetischen Energie in den zugehtrigen Impulsen u, v, w lautet, wenn m
die Masse des Teilchens bedeutet und ¢ die Lichtgeschwindigkeit:

cYmic® + u? 4 v® + wl

Fiir die Durchrechnung ist es zweckmifig, die Koordinaten und Impulse

des Teilchens auf die MaBeinheiten bzw. mc¢ zu beziehen; dann

h
2xm
sind sie dimensionslose Gréfen und zugleich mit der von uns befiir-
worteten Normierung der kanonischen Koordinaten in Einklang. s
handelt sich darum, die Abbildung oder Hermitesche Form zu kon-
struieren, welche dieser GriSe entspricht im Raume der Funktionen
¥ (2, y, ). Als Musterbeispiel diene der eindimensionale Fall. Es ist

* Siehe etwa E. Schrédinger, Abbandlungen zur Wellenmechanik, Leipzig
1927, S.163, — Ann. d. Phys. (4) 81, 133, 1926.
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die Fourierzerlegung von Vl + #? vorzunehmen. Im Sinne friiherer
Bemerkungen hat man diese Funktion zunichst etwa durch

el Y1 4 42 (1))

su ersetzen mit einem kleinen positiven o und dann & gegen O konver-
gieren zu lassen. Setzen wir

Q=

R {‘e—““Vl +uletdu = G, (), (68)
0
so ist die der GroBe (57) korrespondierende Abbildung
+ oo + oo
P(@) > V@ = [ 9@ —0) G (0)d0 = [ Golo — B L(E) 3E (BY)
die Hermitesche Form der willkiirlichen Funktion v (z) lautet:

4 =0
[[Gele—BHv@ I @ asdt

Um an der geraden Funktion G,(6) fiir 6 > 0 den Grenziibergang
zu oo = O zu vollziehen, schlagen wir in dem Integral, von dem = G, (6)
nach (58) der Realteil ist, den Integrationsweg in die negative imaginire
Halbachse hiniiber: w — —if, indem wir die Singularitit ¥ — —
nach rechts hin umgehen:

1 =)
— ije—w—mnw — 2 dt —je—w—fa)t Ve — 14t (60)
0 1

Im Limes fir & — O ist der Realteil also

G(G)_—_——%-‘.e“‘”‘/t”—ldt (6> 0).

Daraus liest man sofort ab, dafl

1
— 6@ =5—TI0

ist, wo I' fiir 6 = O nur noch logarithmisch unendlich wird. In (59)
macht der Grenziibergang zu & — O an dem I-Teil keine Schwierigkeit.
In (60) ist der erste Summand bei & 4 i6 == O regulir, der zweite hiingt
eng mit derjenigen Hankelschen Zylinderfunktion erster Ordnung H
zusammen, die mit positiv wachsendem 6 exponentiell zu O geht; er ist
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H (o + i6)

o 4 i6 )
Teil, der an der kritischen Stelle ot 4 ¢6 = O nur logarithmisch un-
endlich wird,

namlich — Darum ist bis auf einen additiv hinzutretenden

PO P

So kommt als Reprisentation der kinetischen Energie die Operation

+ o
V(@) > ¥ @) = ¥*@) + (@ —H @) dé, (61)
+ 20
%y — imp L (28
—v@ —z1—>mazm 75_.[52_‘@’

(der Einfachheit halber ist i reell angenommen). Der Grenziibergang ist
so zu verstehen, daB z komplex — x 4 iy ist mit positivem’ Imaginr-
teil ¥y und y zu O strebt. Das in der letzten Gleichung hinter dem
Zeichen R stehende Integral ist das i-fache der Ableitung derjenigen
analytischen Funktion in der oberen Halbebene y > 0, deren Realteil
auf der reellen Achse mit unserem ¢ (z) zusammenfallt. — % (x) ist

dy

demnach die nach der inneren Normale » genommene Ableitung an

dieser Potentialfunktion am Rande. Da das tiber den Rand erstreckte

Integral von — wg—? nichts anderes ist als das Dirichletsche Integral
7
D (%) iiber die obere Halbebene, haben wir schlieflich als die der Grofe

V1 ++u? zugehsrige Hermitesche Form:

. + o
D)+ {[Me—pv@v®dedt

Wenn es sich um ein einzelnes Teilchen handelt und eine (in der Einheit
mc? gemessene) potentielle Energie ¥(z) da ist, besteht das Eigenwert-
problem darin,

+ o0 + o0
D)+ [[Ta—®v@ v @dvdt+ [ V() v* @) ds
+ oo
zum Extremum zu machen unter der Nebenbedingung J. P?dz — 1. Die

Extremalwerte A sind die Energiestufen.
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Es ist klar, daB die Operation (61), wenn sie zweimal ausgefiihrt
wird, zu derjenigen fithren muf, die 1 -+ «® korrespondiert, d.i. zu

v@ + g;.'i_’ . Deshalb kann die Schwingungsgleichung fiir das einzelne
Teilchen auch in der Form einer gewohnlichen Differentialgleichung
angeschrieben werden:

¢+w>w@—m@ww

Aber hier tritt der Eigenwertparameter 1 nicht mehr in linearer Weise
auf, und die Hilfte der Eigenwerte sind falsche. Auf solchem Wege
gelang es Schrodinger und P. Epstein, die Energiestufen und Eigen-
funktionen des Wasserstoffatoms relativistisch zu berechnen*®  Wenn
aber mehrere Teilchen im Spiel sind, ist es unmbglich, durch Iteration
zu Differentialgleichungen zn gelangen.

Wenn die wirkenden Krifte Coulombsche Krifte sind, die von
einem festen Kern ausgehen, ist es zweckmiBig, die Komponenten ¢ der
reinen Fille im Hauptachsensystem der Impulskomponenten zu benutzen.
Die kinetische Energie ist dann einfach reprisentiert durch die Multi-
plikation

q>—>q) o' (4,0, w) = V146 o0 0)
6 = w4 o+ ),

Es gilt, die reprisentierende Hermitesche Form fiir das Potential 1/r
(* = 2* + y* + ¢*) zu finden. Auns Konvergenzgrinden werde 1/r

— L7

sunichst ersetzt durch , wo I eine kleine positive Konstante ist.

Fiir das Integral in der Fourierzerlegung dieser Funktion

Y, —1
r

findet man leicht durch Einfihrung von Polarkoordinaten

4

AT e @=d+F+90

% B.Schrédinger, Abbandlungen zur Wellenmechanik, 1827, 8,164, = Ann.
d. Phys. (4) 81, 184, 1926. P. S. Epstein, Two Remarks on Schridinger’s
Quantum Theory, Proc. Amer. Nat. Acad. 18, 94, 1927.
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Die gesuchte Abbildung ist also diejénige, welche @ (u, v, w) verwandelt in
4 oo

Po (u,v,w) = 1 jjjgo(u—l—u,v-}—ﬂ,w—i— p) ~

-— o

dudﬁdy

+ oo

_ 1 @l pp)dadpdy .
‘“%ﬁ“fw—@t+w—muww~wﬂ 62)

_—x

>

[ 2,900

0 )
In der letzten Gestalt bedeutet M,(p) den Mittelwert der Funktion ¢
auf der Kugel vom Radius ¢ um den Punkt (#, v, w) im Impulsraum.
Behalt man ! zunichst noch bei, so tritt im Ausdruck (62) der Summand
im Nenmner hinzu. Die Funktion, die sich so ergibt, ist im vierdimen-
sionalen Raum mit den Koordinaten #, v, w,1 diejenige Potentialfunktion F,
welche aus der Massenbelegung der ,Ebene“ I — O mit der Dichte ¢
entsteht. Pg sind ihre Werte auf der belegten Ebene. Da offenbar

+ =0
Hj dodfdy  const

2
14

|

3 .3
Tyo T20 Tia

.
— oC

ist, wo 1, 2, 0 = (@ 8y) drei Punkte im Impulsraum bedeuten und r,,,
T491 7,4 ihTe gegenseitigen Abstande, liefert die Wiederholung P? vor P
den ProzeB, der im dreidimensionalen Impulsraum ¢ fiberfiihrt in die
durch die Raumbelegung ¢ erzeugte Potentialfunktion @. Es gilt be-
kanntlich Po o P

R T T

Man wird nach Kugelfunktionen zerspalten. Benutzt man die ober
erwihnte vierdimensionale harmonische Funktion F und macht den Ansatz

F=7Y,.F(),

in welchem Y, eine nur von der Richtung w:v:w abhingige Kugel-

funktion n-ter Ordnung sein soll, so gentigt im oberen Halbraum I >> 0
der nur von s und I abhingige Faktor F der Gleichung

0 /,0F: & 0*F

_— = 1) F

Js ,S ds)+ or =n@+DF

und die Operation P bedeutet den Ubergang von den Randwerten ihrer
normalen Ableitung zu ihren eigenen Randwerten. Vielleicht ist es
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‘bequermner, statt F'(s,7) die Funktion s F'(s, 1) = F* (5,1) zu benutzen. Fir
sie lautet die Differentialgleichung

0*F* O%F* _ n(n 4+ I)F*

0s? or s? '
F* ist eine Funktion in der oberen Hilfte [ > O einer (s, [)-Ebene, welche
bei Spiegelung an der 1-Achse ungerade ist. — Indem man in (62) den
Faktor 1/R?

BR=u—a)}+@—p*+@w—p? =85+ 6 —2s6cosd,
nach Kugelfunktionen P, (cos®) entwickelt:
-}{—2 = 43%"20 @n + 1)L, . P,(cos ),

erhilt man, wenn analog

¢ = Y,.5¢9%(s)
angesetzt wird, als Ausdruck der Operation P an solchen Fupktionen die

Formel o

1 23 2
70 > 52 [ Zo(Gr) o @da,
° +1

-1

Wenn das Einkorperproblem vorliegt, wird man, auf die Gefahr hin,
eine Serie falscher Eigenwerte einzuschmuggeln, P iterieren und dadurch
zu einer reinen Differentialgleichung kommen. Fiir das nichtrelativistische
Wasserstoffatom sind die Eigenfunktionen ¢, (%, v, w), die durch die
Fouriersche Transformation aus den Schrddingerschen Eigenfunk-
tionen 9, (z, y, £), den Laguerreschen Polynomen, hervorgehen, in
meiner Dissertation angegeben*. Sie konnen auch sehr schon direkt auf
dem hier skizzierten Wege gewonnen werden. Im Mehrksrperproblem
versagt die Iterationsmethode.

Coulombsche Krdfte zwischen mehreren beweglichen
Teilchen. Dem reziproken Abstand 1[r,, zweier Teilchen 1 und 2
entspricht im Gtebiet der Impulsfunktionen ¢ (u,, v, w,; u,, v, w,), wie
man auf die gleiche Weise erkennt, die Abbildung

+ o

, 1
Q> = ﬁﬂjq)(umLu,vd—ﬂ, w, + ¥;

- deedfd
ug‘f‘“; ”2+ﬁ! wg_’"?’)u_g{'ﬁg‘#'

* Math. Ann. 66, 307—309, 317—324, 1908.
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Die Bezeichnung soll natiirlich nicht ausschliefien, da ¢ auch von den
Impulsen der iibrigen Teilchen abhingt, diese werden aber von der Trans-
formation nicht mit betroffen.

Mathematischer Anhang.

Beweis des Satzes von der Hauptachsentransformation
einer unitiren Abbildung. Ist die unitire Abbildung A = || a;||
gegeben, so bestimmen wir einen Vektor r 7= 0, der durch 4 in ein
Multiplum von sich selber iibergeht:

n

rd4 = gv oder > a;% = & (63)

i=1
Wihlen wir ¢ als eine Wurzel der Sikulargleichung
det (61 — 4) = 0,

so existiert tatsichlich ein derartiger Vektor ¢ = e,. Indem wir seinen
Betrag zu 1 normieren, erginzen wir ihn durch weitere #n — 1 Vek-
toren e,, ..., ¢, zu einem normalen Koordinatensystem. Da in ihm die
Gleichungen (63) fur e, d. i firs, =1, 2,=20, ..., x5, =0 erfiillt
sind, ist jetzt

Gyy == & Oyg = *** == Gy p — 0.
Die Quadratsumme der absoluten Betrige der ersten Koeffizientenzeile
in A muB 1 sein, darum ist |¢| = 1. Aber auch die absolute Quadrat-
summe der Glieder, welche in der ersten Spalte stehen, ist = 1, und
das liefert

L]y P4 o tlanff =1 gy === 8 =0

Das ist der entscheidende Schluf. Die Matrix 4 zerfillt nunmehr in
der aus dem Schema ersichtlichen Weise:

£ 0 0 ...0 |
0 ay, ag, Qg n
O a3g a33 a3n
0 Ayg Opg - . . (/2%

Durch Induktion in bezug auf die Dimensionszahl n ist damit der Beweis
vollendet.

Liegt die unitare Abbildung 4 in der Normalform vor, mit den
Termen a; in der Hauptdiagonale, so geniigen der Gleichung (63) offenbar
alle und nur diejenigen Vektoren, welche sich aus Grundvektoren e; zu-
sammensetzen, fiir die @; = & ist. Daraus geht hervor, daB die ver-
schiedenen Eigenwerte a', a”, ... mit ihrer Vielfachheit und die zu-
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gehorigen Teilrsume R (a'), R (a"”), ..., von denen in §1 die Rede war,
eindeutig durch A bestimmt sind.

Wenn A== || a:|, B=/{| b;x|| vertauschbare unitire Matrizen
sind, lassen sie sich simultan auf Hauptachsen transformieren,
Beweis: A kann sogleich in der Normalform angenommen werden, in
welcher nur Glieder a; in der Hauptdiagonale auftreten. Die Vertausch-
barkeitsforderung besagt

(@s — ag) by, = 0. (64)

Wir teilen die Indizes in Klassen, indem ¢ und % in dieselbe Klasse
kommen, wenn a; = a ist. Die Gleichung (64) zeigt, dafi b;;, — O ist,
wenn die Indizes ¢ und k verschiedenen Klassen angehoren; d. h. B zerfallt

in der gleichen Weise in Teilmatrizen: B’, B", ..., die sich lings der
Hauptdiagonale aneinanderreihen, wie sich die @; in Klassen unter-
einander gleicher aufteilen: ¢’y a”, ... Die Abbildung B 148t die zu den

Eigenwerten o', a”, ... gehorigen Teilriume R (a’), R(a"), ... einzeln
invariant. Die Normalform von A4 wird nicht zerstort, wenn die Variablen,
welche der gleichen Klasse angehoren, untereinander unitir transformiert
werden, Durch geeignete Wahl dieser einzelnen unitdren Transforma-
tionen in den Riumen R (a’), R (a”), ... konnen aber B’, B”, ... auf die
Normalform gebracht werden. — Das Verfahren ist ohne weiteres auf
irgend eine kommutative Gesamtheit von unitiren Matrizen zu iiber-
tragen.

Der Satz von der Hauptachsentransformation der Hermiteschen
Formen ist ein Grenzfall des soeben bewiesenen, kann aber auch nach
der gleichen Methode direkt abgeleitet werden. Der Schluf von

Ayg == *** = Oy 4 = 0 auf Qyq == o+ == Qpq = 0
geschieht hier vermoége der Symmetriebedingung ay; — a;;.

Beweis des Satzes, dal eine unitire Abbildung A not-
wendig — &1 ist, wenn sie mit allen unitdren Abbildungen
eines gegebenen irreduziblen Systems U vertauschbar ist.
Man fithre dasjenige normale Koordinatensystem ein, in welchem 4 mit
den Eigenwerten o, zur Diagonalmatrix wird. Sind nicht alle a einander
gleich, so zerfallen die samtlichen Matrizen U der vorgegebenen Gesamt-
heit in der gleichen Weise, wie die a; in Klassen untereinander gleicher
zerfallen; A bewirkt dann einen simultanen Zerfall aller Matrizen des
Systems 11
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Den Satz iber die lineare Transformation einer nicht-
ausgearteten schiefsymmetrischen reellen Bilinearform

/
kE Cie T (ks == — Cip) (65)
k=1
beweist man so. Man fasse das einzelne Zahlsystem (z,, =,, ..., %,) als

einen Vektor y auf und bezeichne (65) als das schiefe Produkt [yy] der
beiden Vektoren ¢ und § = (y;). Man wihle einen Vektor ¢, 4= 0. Nach
Voraussetzung ist [e, r] nicht identisch in y gleich O; ich kann also einen
zweiten Vektor e, so finden, daB [e,e,] — 1 ist. Die simultan zu er-
filllenden Gleichungen
[6,8] =0, [e2] =0
bhaben mindestens f — 2 linear unabhingige Losungen e, ..., en Auch
zwischen ihnen und e,, ¢, findet keine lineare Relation statt. Denn ist
t =&+ &g+ Eseg+ o+ 5rep =0,

so folgt durch Bildung der beiden schiefen Produkte f[e,z] — §&,,
ear] = —§, daB £, = § = O wird. Man kann also ¢, ¢, ..., ¢ als
Koordinatensystem, als Vektorenbasis verwenden. In den darauf beziig-
lichen Komponenten £;, 7; der beiden Vektoren r und f laute das schiefe
Produkt

!
[ty = =X pukime
k=1
Gem#f der Bestimmung der Grundvektoren gilt fiir die Koeffizienten
Vi == [es84]:
P1=0 pp=0L =0 .47n=0
Par = —1, Y50 = 03 955 =0, .., 42, = 0.

Wegen der schiefen Symmetrie sind infolgedessen auch alle y;y, 7i2
mit § = 3, ..., f gleich 0; und die Matrix der y;; zerfillt in das zwei-

reihige Quadrat und eine (f — 2)-dimensionale schiefsym-

0 1j
—1 0]
metrische Matrix. Durch Induktion in bezug auf die Dimensionszahl f
ergibt sich der behauptete Satz.
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Die Eindeutigkeit der Schridingerschen Operatoren.

Von

J. v. Neumann in Berlin.

1. Die sogenannte Vertauschungsrelation
h
PQ—QP=5—1

18t in der neuen Quantentheorie von fundamentaler Bedeutung, sie ist es,
die den , Koordinaten-Operator* R und den ,Impuls-Operator“ P im wesent-
lichen definiert'). Mathematisch gesprochen, liegt darin die folgende An-
nehme: Seien P, @ zwel Hermitesche Funktionaloperatoren des Hilbertschen
Raumes, dann werden sie durch die Vertauschungsrelation bis auf eine
Drehung des Hilbertschen Raumes, d. i. eine unitére Transformation U,
eindeutig festgelegt®). Es legt im Wesen der Sache, daB noch der Zusatz
gemacht werden muf: vorausgesetzt, daB P, @ ein irreduzibles System
bilden (vgl weiter unten Anm. ¢). Wird nun, wie es sich durch die
Schrodingersche Fassung der Quantentheorie als besonders giinstig erwies,
der Hilbertsche Raum als Funktionenraum interpretiert — der Einfachheit
halber etwa als Raum aller komplexen Funktionen f(¢) (— co < g < + o0)

+ o
mit endlichem [|f (¢)’dg —, so gibt es nach Schrédinger ein besonders

einfaches Losungssystem der Vertauschungsrelation

& fl@)—af@), P: 1(9) —gei 7 7(0) -

*) Vgl. Born-Heigenberg-Jordan, Zeitschr. f. Phys. 84 (1925), S. 858—888, ferner
Dirac, Proc. Roy. Soc. 109 (1925) u. f. Besonders in der letztgenannten Darstellung
ist die Rolle dieser Relation fundamental. Binen interessanten Versuch zur Begriindung
des im folgenden zu diskutierenden Eindeutigkeitssatzes machte Jordan, Zeitschr. f.
Phys. 87 (1926), S.388—886. Indessen beruht dieser auf Konvergenzannahmen iiber
Potenzreihen unbeschréinkter Operatoren, deren Giiltigkeitshereich fraglich ist.

#) Dieselbe bewirkt ein Ersetzen von P, @ durch UP U, UQ U™, wodurch weder
der Hermitesche Charakter noch das Boestehen der Vertauschungsrelation bertihrt wird.

%) Vgl. Schrsdinger, Annalen d. Phys. 79 (1926), S. 784—756.
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Sind nun dies die im wesentlichen einzigen (irreduziblen) Lésungen der
Vertauschungsrelation?

Indessen ist die Aufgabe in dieser Form nicht geniigend prizis for-
muliert. Denn als P, @ sind, wie es die Schrddingerschen Losungen zeigen,
auch unbeschrénkte, nicht iiberall definierte Operatoren ins Auge zu fassen,
und fiir diese wird der Operator P@ — QP nicht fiberall definiert sein,
wihrend es der (auf der anderen Seite der Vertauschungsrelation stehende)

Operator 77:?; 1 ist. Die beiden Seiten kdnnen also nur gleichgesetzt werden,
wenn ihre Definitionsbereiche (d. h. der der linken Seite) néher umschrieben
werden. Dieser Schwierigkeit kann man folgendermaBen aus dem Wege gehen:

Durch formale Operatorenrechnung folgt aus der Vertauschungsrelstion

(F(x) analytisch, F'(z) seine Ableitung, vgl. Anm. 1))

h ’
PF(Q)—F(@)P=5;F (@),
mﬂm
und hieraus fiivr F(z) =e*
R 27t
ok 8pen P pagl,

Hieraus folgt wieder formal

2mi EEX
-—FfQ —=—8Q
e » "F(Pe® "=FP+B1),
g—ﬁam
und somit fiir F(x)=¢*
21 exg R dmd LEd
Pk L N S st S

Diese Gleichung ist von Weyl aufgestellt und als Ersatz der Vertauschungs-
relation vorgeschlagen worden®). Ihr groBer Vorzug besteht in folgendern:

Es ist unter Umstinden moglich, mit Hilfe der Operatoren P, @ einpara-
2 EED)
8

metrige Scharen U(e) = e? F, V(B)=e ¢
sind, und dem Multiplikationsgesetz
U()U(B)=U(e+B), V(«)V(8)=V(e+§)
geniigen®). Dann stehen auf beiden Seiten der Weylschen Gleichung
2iap
U)V(p)=e* ~-V(8)U(e)
4) Vgl. Weyl, Zeitschr. f Phys. 46 (1928), Seite 1-—46.

5) Vgl. Weyl, Anm. 4), ferner Stone, Proc. of Nat. Academy 1930, Im Schridinger-
schen Falle wird, wie man leicht erkennt:

zu definieren, die unitér

o

27y

I}
Uy F@—fla+e), TVE: F@)—e® 1o,
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unitére, also beschrinkte und iiberall definierte Operatoren, so daf ihr Sinn
e vollig klarer ist.

Es bliebe daher zu zeigen, daB die einzigen irreduziblen Lésungen®)
der Weylachen Gleichungen die Schrodingerschen (d. h. die aus Anm. %))
sind. Beweisansitze hierfir gab Stone (vgl. Anm. %) an, jedoch ist bisher
ein Beweis auf dieser Grundlage, wie mir Herr Stone freundlichst mitteilte,
nicht erbracht worden.

Im folgenden soll der genannte Eindeutigkeitssatz bewiesen werden.
Wir werden sogar alle (auch die reduziblen) Loésungen angeben konnen.

2. Sei § der Hilbertsche Raum (etwa durch alle Folgen komplexer

Zahlen {z,, ,, ...} mit endlichem 2 |2, |° realisiert; oder a,uch durch alle
n=

komplexen Funktionen f(g), —co < ¢ < 00, mit endlichem f LF(@) " dg).

Wir beniitzen die geometrische Termmologle in §, indem wir das yinnere

Betrag“ | 7| = V{7, ) (glemh 1/2[ . |? baw. _.£|f(q)|‘~’dq> einfithren 7).

Wir werden ausschlieBlich beschrénkt-lineare (iiberall definierte) Operatoren
in § betrachten, den transponiert-konjugierten Operator des Operators A4
nennen wir A% (er ist durch (Af,g) =(f, 4%g), (f, Ag) = (4% f, g) de-
finiert). Wir erwéhnen noch eins: Wenn der Operator A (¢) vom Para-
meter ¢ abhiingt, so nennen wir diese Abhingigkeit meBbar, wenn alle
Funktionen (4 (e)f, g) (dies sind komplexe Zahlenfunktionen der. reellen
Zahlenvariablen ¢, dagegen betrachten wir £, g als Parameter) im Lebesgue-
schen Sinne in « meBbar sind®), DaB mit 4(«) auch a.d (o), A(e)* und
mit A(«), B(«) auch A4(«)-+ B(¢) meBbar ist, ist klar, aber auch
A(e) B(x) ist es. Dies folgt aus den bekannten Regeln der Matrizenmulti-
plikation, oder auch direkt, o¢,, @,, ... sei ein vollstindiges, normiertes

%) Fin System von Operatoren 4, B, ... (im vorliegenden Falle besteht es ans
allen U(a) und V(#)) heiBt irreduzibel, wenn es auler O und dem vollen Hilbertschen
Raume keine abgeschlossene Linearmannigfaltigkeit (d. h. Hyperebene) M mit der
folgenden Eigenschaft gibt: mit f gehdren auch Af, Bf,... zu M. Vgl. auch die
Ausfithrungen im Buch von Born und Jordan, Elementare Quantenmechanik. Berlin 1930.

) Vgl. E. Schmidt, Rend. Circ, Mat. Palermo 25 (1908), 8. 57—78, ferner die
Arbeit des Verf, Math. Annalen 102 (1930), 8. 49—131, an die die Bezeichnungs-
weise anlshnt.

%) Sei ¢y, 5, ... ein vollstéindiges, normiertes Orthogonalsystem in . Dann

ist f= Zm,.%, g-2y,,¢,,, also (A(u)f,g)— limes 2 Zw g, (4() @, 9,)-
, N>co m=1a=1

Somit genugt die MeBba.rkelt der (4 () p,, ®,), d.h der Matrizenelemente von 4(«)
im Koordinatensystem der o, @,, ....
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Orthogonalsystem:
(A(@)B(a)f,9)=(B(e)f, A()*g) =n§'1(B (@) f,9,) (@, A*(2) g)

=n§1’ (A (o) a, (P”) (B (O‘) fs (pﬂ) :

Dasselbe gilt, wenn an der Stelle von « mehrere Variable «, 8, ... stehen.
Wir keh:ren nun zu unserem Problem zuriick, ersetzen aber in 140

g durch 5~ /3 Dann lautet es so:

Alle U(oc),V(ﬂ) seten unstdre Operatoren, die mefBbar von «,f ab-
hingen. Es gelten die Relationen

U()U(B)=U(a+8), V(a)V(B)=V(a+5),
U()V(p) ="V (8)U(a).
Alle derartigen Systeme sind zu bestimmen.
Wenn wir die (von «, # meBbar abhéngende, unitéire) Operatorenschar

S(e, B) = HU@) V()= V(B) U ()

einfithren, so kénnen wir die obigen Relationen zu

§ (e 8)8(r, 0) =8 (e 4y, 5+ 0)
zusammenfassen. Infolgedessen ist §(0,0) die Einheit, und daher S(— o, —p8)
zu 8 (e, B) reziprok, also 8 (e, #)*= S(—a, —B). Bs sollen nun Linear-
aggregate der S(«, f) betrachtet werden, diese werden folgendermaBen de-
finiert: Sei e (e, f) eine iiber die ganze «, f-Ebene absolut integrierbare
Funktion, dann ist wegen der Schwarzschen Ungleichheit

I(S(a,ﬂ)f,g)lgIS(oe,ﬁ)fI'lg!=|f|-|g|,
d. h. beschréinkt, also auch das Integral

[ a(e,) (8@ pfg)dedp
absolut konvergent. Und zwar ist es, wenn wir ¢ = [, B) |dedf
setzen, absolut < e¢- . Dabei igt es in f linear und in ¢ konjugiert-
linear. Daher ist ein Satz von F.Rief anwendbar?), wonach bei festem f
ein £ existiert, so daB dieser Ausdruck fiir jedes ¢ = (f * g) ist, und zwar
ist || L e |f]. f* ist durch f bestimmt, und zwar ist die Abhangigkeit
linear, wir konnen also einen linearen Operator 4 durch 4 f= f* definieren,
nach der obigen Formel ist A auch beschréinkt. Wir schreiben symbolisch

A=ff“(“»/3)‘g(“’ﬁ) dedp,
obwohl die Definition eigentlich
(Af, 9)=[[a(xB) (S (« p)f.g) dudp
lautet. @ (a, B) heiBe der Kern von A.

%) Vgl. anch a.a.0. Anm. 7), Math. Annalen 102 (1930), S. 94, Anm. %).
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Wir beweisen einige Rechenregeln fiir diese Operatoren. Daf a4 den
Kere aa(w, §) hat, ist klar, 4™ hat wegen S(a, §)*=8(—«, —~ f) den
Kemn a(—@a, — (), 48 (u,») und §(u,v)4 wegen der Multiplikations-
regel der S (e, 8) den Kern

e%i(avﬂ?u)a( e“‘i‘“"‘”"‘ﬂ“)

«—u,ff —v) bzw ale—u,f—wv).

Haben 4, B die bzw. Kerne a(«,f), b(«,f), so hat 4+ B offenbar
a(a, )+ b(x, B), bel AB dagegen ist eine kleine Rechnung notwendig:

(4Bf,9)=(Bf, A"g) = [ b(e, ) (S (2, B)f, 4"g) dudp
= [T 0(a,8) (48, B)f, g) dedp
=JfIf0( B)er " a(y —u, 6= B)(S(7 6) 1, g) dedfdydd
=[{[[e* " a(y — .6 — ) b (e, B) dadf](8(1,0) £,9) dy dd.

Der Kern von AB ist also (statt y, § schreiben wir wieder «, f, statt

«,p &) [ ghien=iy a(o—E,8—n)b(E,n)dédy. (Die absolute
Integrierbarkeit folgt aus der Deduktion.)

SchlieBlich zeigen wir: wenn A4 verschwindet, so ist auch sein Kern
(bis auf eine Lebesguesche Nullmenge) gleich 0. Aus 4= 0 folgt namlich
8(—u, —v)A8(u,v) =0, also, da dieses den Kern gi@v—é4 a(e,B) hat,

[fe@ = g (a, B) (8 («,8)f ) dedf =0.

Somit ist jedenfalls
JIP(e, ) al, ) (S(e, B) £, 9) dudp =0,

wenn P(a, B) ein Linearaggregat von endlich vielen e’***'# igt, also fiir
jedes trigonometrische Polynom mit einer Periode p > 0 in «, 8. Da der
zweite Falktor absolut integrierbar ist, und der dritte beschrinkt, kénnen
wir mit dem ersten (P (e, 8)) Grenzitberginge ausfithren, falls dieser dabei
gleichmiBig beschriankt bleibt. So konnen wir die Klasse der P(a, §) suk-
zessiv erweitern: 1. zu allen stetigen Funktionen mit einer Periode p > 0
in e, f, 2.zu allen beschrinkten stetigen Funktionen, 3. zu allen beschrinkten
Funktionen der ersten Baireschen Klasse, Wenn also R ein beliebiges (end-
liches) Rechteck in der o, f-Ebene ist, so kénnen wir P(e, 8) in R gleich 1
und auferhalb = 0 setzen, es wird:

[ ate ) (S 1, g) dadf =0

fiir alle diese 9. Daher ist (mit Ausnahme einer «, f-Nullmenge)
a(e,B)(8(a,B)f,g)=0. Dies gilt hei festem f, g, ist aber nur 7 fest,
wihrend ¢ ein vollstindiges normiertes Orthogonslsystem durchliuft, so
gilt es fiir dieses 7 und alle genannten g auch noch mit Ausnahme einer
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, f-Nullmenge. In diesem Falle ist aber a(«,f) 8(«,f)f=0. Da nun
fir f+=0 |[S(e,B)f|=]Ff| >0 ist, muB dann @ (e,B) =0 sein — womit
alles bewiesen ist.

3. Die Losung des Eindeutigkeits-Problems wird durch Betrachten des
Operators

A= ffe_i“h%ﬂzs (e, B) dedf

gewonnen, Dieser Operator ist nach unseren bisherigen Resultaten hermitesch
(dh 4=A4%) und 40, und hat auBerdem die bemerkenswerte Eigen-
schaft, daB sich 48(u,v)4 nur um einen Zahlenfaktor von 4 unter-

gcheidet. In der Tat hat 4 den Kern e—&w—;“ﬁz, also S(u,v)4 den Kern
e—&””_'g")e—i(a_u)h%w-mn.- also A48 (u,v)4d
ff eﬁ(w]—ﬁme—i(a—ahi(ﬂ—u)*e—&i(sv—nu)e—&(&-—u)*—}m—v)*df d
- J‘f e"%E’—%ﬂ‘+(&°‘+%u—%iﬂ—%“’>E+(H+%v+iri°‘+%w)n—ia“%ﬁ’—iu‘-ive d& dn
_ e—}u’—&v’e-}a‘—iﬂﬂ ff e—%&“+§(a+u—'iﬂ~1lv)—§11“+§ri(a+u—1;ﬂ—iv)qd£ dn
_ e—}uﬂ—iv‘ e—&az—ﬂﬁ ff e—-%(E—%(a+u-—iﬂ—iv))‘-’-—i§(q-—-}i(a+u—iﬂ-—1}v))“d5dn
A Lo AP L 1 ff PRLEaa L dy
—9qe d0TEN, e
Hierin ist der erste Faktor konstant und der zweite der Kern von 4,

also gilt
AS(u,v) A= ame 1 4,

Wir betrachten nun die Loésungen der Gleichung Af=2nf, da 4
linear-beschrinkt ist, bilden sie eine abgeschlossene Linearmannigfaltiglkeit
im Hilbertschen Raume, 9%, Jede von ihnen hat die Form Ag (mit

g=2—1—”f‘), und umgekehrt gehort jedes Ag zu ihnen, da A*=2x-4 ist

(man setze in der obigen Gleichung u=1v= 0). Die zn N orthogonale

abgeschlossene Linearmannigfaltigkeit: sei N, die Elemente f von % sind

durch Orthogonalitét zu allen Elementen von 9t gekennzeichnet, d. h. zu

allen 4g. D.h.: immer (f,4g) =0, oder: immer (4 f,g) =0, oder: Af=0.
Wenn f, g zu I gehoren, so ist

(8 (@, B) 1, 8(r,8)g) = =5 (S (¢, ) 4, 8 (7, 0) Ag)

1 4i(md-
(48—~ )8 @M AL =g (A8 e~y f—0)ALg)
1 e-&(a—r)“—i:(ﬂ—-d)%%i(aé—ﬂr)( Af,g)= e-i<«-v>’—%<ﬁ—6>’+%i<a6—ﬂr>(f’ g).

2m



97

576 J. v. Neumann.

Seli nun @, @,, ... ein normiertes Orthogonalsystem, welches in I
vollstindig ist (d. h. 9 aufgespannt, die Zahl seiner Elemente ist endlich
oder abzéhlbar unendlich). Aus (¢,,®,)=27,, (d. 1 1 fiir m =n, 0 sonst)

folgt

(8¢, B) ,., 8(y, 8) ) = o L LRSS S P

Die durch alle S(«, )@, (n fest, e, variieren) aufgespannte abgeschlossene
Linearmannigfaltigkeit heife 9,, nach der obigen Formel gind fiix m +n
B,.» B, zueinander orthogonal. Die R,,R,,... mdégen zusammen die ab-
geschlossene Linearmannigfaltigkeit © aufspannen, die zu & komplementiire
abgeschlossene Linearmannigfaltigkeit sei .

Da jedes S(y,d) die S(«,8)p, (bis auf Zahlenfaktoren) in ebensolche
transformiert, bildet es B, auf ein Teil von sich ab; da dasselbe fiir
8(y,8) ' =8(—yp,—8) gilt, ist P, genau invariant. Also ist auch &
und T invariant. & umfaBt alle P, also alle ¢, also M, daher liegt T
in N. Somit gilt in T stets 4f=0. Nun gelten alle unsere iiber 4 an-
gestellten Betrachtungen schon in ¥, denn die S(«,B) kénnen als Opera-
toren in T angesehen werden, da dieses ihnen gegeniiber invariant ist. Da
nun in ¥ A =0 ist, kann nach unserem Beweise in & niemals f==0 sein.
Also enthdlt T nur die 0, & ist der Hilbertsche Raum, d. h.: B,, B,, ...
spannen den vollen Hilbertschen Raum auf.

Der Hilbertsche Raum erscheint somit als in eine endliche oder ab-
zéhlbar unendliche Zahl von (paarweise orthogonalen) Unterrdumen 9, ,%,,...
zerlegt; jeder derselben ist gegeniiber allen S(«, ) invariant, es geniigh
also das Verhalten der S (z,8) (d.i der U(a), V(B)) in einem jeden der-
selben gesondert zu ermitteln, um iber sie restlos informiert zu sein. (Im
Falle der Irreduzibilitit darf es natiirlich nur ein 9B, geben, und dieses ist
dann der volle Hilbertsche Raum.) In B, wissen wir nun iiber die S(«, )
die folgenden Tatsachen:

Wir nennen B, B, S(«,8)p, f,4 Dann git:

Fiihy—ud)
S(y’ 5) fa'ﬂ=e fa+y,ﬂ+6’
~Fla—yr-t(B-0r+diti—py
(fo s Fr8) = ¢ )

und die Linearaggregate endlich vieler f, , (die beliebig wihlbar sind!)
liegen in P iiberall dicht.

Wenn wir nun zeigen konnen, daf irgend zwei solche P, in deren
jedem eine Schar von unitéren Operatoren S («, ) und Punkten f, , mit
den obigen Eigenschaften gegeben ist, isomorph sind, so sind wir am Ziele.
Isomorphie bedeutet: Existenz einer ein-eindeutigen, linearen und lingen-
treuen Abbildung der beiden P aufeinander, die die f, , und S(x, f) des
einen P in dieselben des anderen iiberfiihrt.

mn '



98

Eindeutigkeit der Schridingerschen Operatoren. 577

Unsere Formel fiir (f,,, f,s) erlaubt fir jedes Linearaggregat endlich
vieler f, , den Absolutwert zu berechnen, wenn wir also die gleichlautenden
fop-Linearaggregate beider P einander zuordnen, so haben wir eine ein-
eindeutige, lineare und lingentreue Abbildung dieser Mengen aufeinander.
Da sie in den bzw. B fiberall dicht sind, sind sie stetig auf die ganzen P
ausdehnbar. Dabei bleiben Linearitit und Léngentreue, also auch Ein-
eindeutigkeit, erhalten. Die bzw. f, , entsprechen einander. Wegen der
8 (y, 6)f, p-Formeln gehen auch die 'S(y,8) in ihre entsprechenden fiber:
wenigstens flir die £, ,, aber dann auch fiir deren Linearaggregate und
Héaufungspunkte — also in ganz B. Damit ist, wenn wir wieder zu den
U(e),V(B) zurtickkehren, folgendes bewiesen:

Ein System unitirer Operatoren U(ca), V(8) nebst esnem System von
Punkten f, 5, die zusammen den ganzen Hilberischen Raum aufspannen,
18t durch die Bigenschafien

V(?’)fa ﬂ= e%iﬂyfa-ﬁ-)' 24 V(é) a, ﬁ= e—%i“dfa B+482
(£ g Frg) = Fa-pr-} (-8 +Fil@d—gy)
o, B2 1y,

H

bis auf eine unitdre Tmnsformatz’on”) eindeutig festgelegt.

Ein System unitdrer Operatoren U(e), V() mit den Weylschen Multi-
plikations- Relationen (vgl. 1.) ist entweder eimes der soeben genannten
Systeme, oder es entsteht dadurch, daf3 der Hilbertsche Raum in endlich
oder abzdhlbar unendlich viele (paarweise orthogonale, Hilbertsche) Unter-
raéume zerfdllt, und in jedem derselben ein solches System angenommen
wird. D. h. es enisteht durch das Zusammenfiigen derselben.

Die irreduziblen Lésungen sind offenbar die ersteren (die Zahl der linear
unabhingigen Losungen von A f=2 - f nimmt fiir sie ihren Minimalwert 1 an).

4, Zum SchluB noch einige Zusatzbemerkungen.

Im Falle der Schrédingerschen Operatoren haben wir U(«x), V(f) in

Anm. %) angegeben: f(q)— f(g-+e), f(q)—e*#2f(q) (%ﬁ statt ,B!>, daher
ist S (e, ); f(q) ¢’ (‘”"‘)

(g + oa) und, wie man leicht berechnet, 4:

éq

sind also dxe c-e "]”q, somit ist p, = ¢, (¢)=n"* , und

1
fa,ﬂ= fa,ﬂ(q) =a ‘e

Man verifiziert dann leicht unsere diesbeziiglichen Formeln. —

——}(q+a)=+iﬂ(q+—g—) -I -3 =+(—a+zﬂ)q+(——+i"—‘£)
=7 e .

10y Sie heie U, dann bewirkt sie (vgl. Anm. %)
U(e)=0U(a) U V(B)>TVBYU™, fap—>Ulap-
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Bei quantenmechanischen Problemen mit £ (=1, 2, ...) Freiheits-
graden tritt das allgemeine Vertauschungsrelationen-System

Pnan=Pan’ Qan::Qan’

n=1,. .k
Pr@u— QuPy= 581 } (m, )
auf. Durch Einfithren von
L. 2]
Ue)=e? " V(H)=ete  (n=1,..,k)

entstehen hierans die Weylschen Relationen
U a)U,(B)=TU,(e+8),  Vu()V,(8)=V.(e+ 8),
U (@) Upn(B) = U (B)Up(w), V(@) Vo(B) =V, (B) Viule),
U (@) V() = etomnab.V (B) U, (a).

Auch hier ist der Eindeutigkeitsheweis mit unseren Methoden aus 2. bis 3.
durchfiihrbar. Wir setzen

T Y 3 B (AT {CALA (AR (D

— ei—i(uxﬂ)'l' ---+°Urﬂl-‘)V(IBI) ... V(,Bk) U(“.‘!.) che U(lxk)
und

A= [ [fetetrrtelntie ety B, B dey

Dann kénnen wir, genau wie in 3.,
o b —hue e dufo dobe . m g
A8 (uUy, sy, vy, o0, ) A= (27) e 4

beweisen, und (durch Untersuchen der Lésungen von Af= (2m)".f } genau
wie dort ans Ziel kommen. —

Vom allgemeinen darstellungstheoretischen Gesichtspunkte aus be-
trachtet, ist unsere Betrachtungsweise mit der Frobeniusschen Behandlung
endlicher Gruppen mittels ihrer ,charakteristischen Einheiten” verwandt bzw.
mit der Weylschen Untersuchung abgeschlossener kontinuierlicher Gruppen mit
Hilfe ihrer Gruppenzahlen?). Die Operatoren 4 = [ [ a(, ) 8(e,8) de df
sind némlich als , Gruppenzahlen“ der §(e,f)-Gruppe deutbar, und
A8(u,v)Ad=¢, A (c,, eine Zahl!) ist der definierenden Eigenschaft der
,Primitiven“ charakteristischen Einheiten gleichwertig.

1) Vgl. Frobenius, Berl. Ber. 1896 w. f., Peter und Weyl, Math. Annalen 96
(1926), 8. 787—755.

(Hingegangen am 31. 8. 1980.)

ap,.
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On the Quantum Correction For Thermodynamic Equilibrium

By E. WIGNER
Department of Physics, Princeton University
(Received March 14, 1932)

The probability of a configuration is given in classical theory by the Boltzmann
formula exp [— V/hT] where V is the potential energy of this configuration. For high
temperatures this of course also holds in quantum theory. For lower temperatures,
however, a correction term has to be introduced, which can be developed into a power
series of #. The formula is developed for this correction by means of a probability func-
tion and the result discussed.

1

IN classical statistical mechanics the relative probability for the range
p1 to pi4dpy; pe to pat-dpe; - - - 5 Pa to pat+dp, for the momenta and x,;
to xy+dx1; %y to xe+dxs; - - - ; %, to x,+dx, for the coordinates is given for
statistical equilibrium by the Gibbs-Boltzmann formula

P{xy, - - Cy Xny 1yt ',Pn)d-’»\h ce o daadpy - - dpn = € P dxy - - dxndpy - .dpn(l)
where ¢ is the sum of the kinetic and potential energy V

2 2 2
e=jil__+p_2._+...+?—"——|—V(x1---xn) (2)
2my

and B is the reciprocal temperature T divided by the Boltzmann constant
B =1/kT. 3)

In quantum theory there does not exist any similar simple expression for
the probability, because one cannot ask for the simultaneous probability for
the coordinates and momenta. Moreover, it is not possible to derive a simple
expression even for the relative probabilities of the coordinates alone—as is
given in classical theory by e=#V(z - %) One sees this by considering that this
expression would give at once the square of the wave function of the lowest
state [\[/o(xl S Xp) |2 when 8=« is inserted and on the other hand we know
that it is not possible, in general, to derive a closed formula for the latter.

The thermodynamics of quantum mechanical systems is in principle,
however, given by a formula of Neumann,' who has shown that the mean
value of any physical quantity is, (apart from a normalizing constant de-
pending only on temperature), the sum of the diagonal elements of the matrix

Qe—fH 4)

where Q is the matrix (operator) of the quantity under consideration and H
is the Hamiltonian of the system. As the diagonal sum is an invariant under

1 J. von Neumann, Gétt. Nachr, p. 273, 1927,
749
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transformations, one can choose any matrix or operator-representation for
the Q and H. In building the exponential of H one must, of course, take into
account the non-commutability of the different parts of H.

2

It does not seem to be easy to make explicit calculations with the form
(4) of the mean value. One may resort therefore to the following method.

If a wave function Y(x; - - - x,) is given one may build the following
expression?

P(x1, «» 5 ®as p1, 0 0y Pa)
1 n 0
=<_._>f "~fdy1---dyn‘l/(xx-i-yx---xn-l-y,.)*
hr -

\[,(xl — yl C e Xy — yﬂ)e”(?ﬂx'*‘""*‘l’ntlu)/h (5)

and call it the probability-function of the simultaneous values of x; - - - x,
for the coordinates and p; - - - p, for the momenta. In (5), as throughout
this paper, # is the Planck constant divided by 2w and the integration with
respect to the ¥ has to be carried out from —ow to ®. Expression (5) is
real, but not everywhere positive. It has the property, that it gives, when
integrated with respect to the p, the correct probabilities W(xx C %) |2
for the different values of the coordinates and also it gives, when integrated
with respect to the x, the correct quantum mechanical probabilities

2

©
f P f 4/(“;1 R xn)e_i(lhxﬁ""+Pn-¢‘n)/hdx1 [N dxn
N .

for the momenta p,, - - -, p». The first fact follows simply from the theorem
about the Fourier integral and one gets the second by introducing x.+ vy,
=ukr; Xr—Ye=0xinto (5).

Hence it follows, furthermore, that one may get the correct expectation
values of any function of the coordinates or the momenta for the state ¥ by
the normal probability calculation with (5). As expectation values are addi-
tive this even holds for a sum of a function of the coordinates and a function
of the momenta as, e.g., the energy H. In formulas, it is

j::'"fjj—:"‘fdxl'"dxndfl'"dpn[f(Pl"‘prI)"*"g(xl'"xn)]

P(x1°"x7b;P1"'Pn)

=£:...f¢,(xl...xn)*[f<-}z_£c—l,---,f—ai) (6)

-+ g(xl RPN x"):“/,(xl [N xn)dxl - dx,

for any ¢, f, g, if P is given by (5).

2 This expression was found by L. Szilard and the present author some years ago for another
purpose.
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Of course P(xy, - - -, ®n; 1, * - *, Pu) cannot be really interpreted as the
simultaneous probability for coordinates and momenta, as is clear from the
fact, that it may take negative values. But of course this must not hinder the
use of it in calculations as an auxiliary function which obeys many relations
we would expect from such a probability. It should be noted, furthermore,
that (5) is not the only bilinear expression in ¥, which satisfies (6). There
must be a great freedom in the expression (5), as it makes from a function
¥ of # variables one with 2» variables. It may be shown, however, that there

does not exist any expression P(x1 - + « %,; $1 - - - pu) which is bilinear in
¥, satisfies (6) and is everywhere (for all values of %1, « -+ +, %u, p1, * -+, Pu)
positive, so (5) was chosen from all possible expressions, because it seems to
be the simplest.
H Y (x;, - - -, xn) changes according to the second Schrédinger equation
a‘l/ n hﬁ 62‘1,
¥ - Y V(e )
ot kz,% 2my dxy? (s oA
the change of P(xy, - + -+, %a; 91, * + *, Pn) is given by
9P " b, OP Qrrtr Y (B/2iMt Pl Ghcketha p
Z oo yE2EZ 4y ; = (8)
at k=1 Mg OXp dxr - - Quy Mo Xl 8pri- s dpyin

where the last summation has to be extended over all positive integer values
of Ay, - + -, A, for which the sum N +Xe-+ - - - 4\, is odd. In fact we get for
P/t by (S) and (7)

apP .
= f fdyl C o dyeri Pt ey [h
at (h1r)"

BT 0% 31, -, e+ 90
'{ZL[_ Hatn x+y)\lf<x1—y1,~~,xn—yn)
Wi 0xk2
OY(xr — yu, -, %~ Ya)
+ lP(xx + Viy © sy %Xn + yn)* : - (9)
axkz
+';;'[V(xl+yly"')xn+yn)

—V(®1~ 31, % — Ya) W(®L Y,y @+ Y)Y — X — yn)}-

Here one can replace the differentiations with respect to x; by differentiations
with respect to y; and perform in the first two terms one partial integration

with respect to y,. In the last term we can develop V(xi+y1, + - -, %a-+¥a)
and V(xi—v1, - * -, x»—a) in a Taylor series with respect to the y and get
P 1 )

—_— = f .. fdyl e dyne21(1u.y.+~--+mun)lh

ot (rh)™

{ Z_?_f_[ _a"b(xl'*'yl;"')xn‘i"yn)*

Yz — 91,5y % — Ya)
ayk

k Mg
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(10)

d — e, X — Y
+ 1!/(x1 -+ Vi *ty %n + yn)* ‘l/(xl Y1, , & Y ):l
ayk

i Pt PaY gLy
- x + b e ) x" + ")*
T3 %; BxM - - - dx M Ayl e e Nl V(o4 o )

'#’(xl*yl:"':xn—yn)}y

which is identical with (8) if one replaces now the differentiations with respect
to y: by differentiations with respect to x. Of course, (8) is legitimate only if
it is possible to develop the potential energy Vin a Taylor series.

Eq. (8) shows the close analogy between the probability function of the
classical mechanics and our P: indeed the equation of continuity

aP pr OP oV oP

at F mp 0%y r O%r Opy

differs from (8) only in terms of at least the second power of # and at least the
third derivative of V. Expression (8) is even identical with the classical when
¥ has no third and higher derivatives as, e.g., in a system of oscillators.

There is an alternative form for 6 P/¢¢, which however will not be used
later on. Itis

a Jd
B—tP(xl;""xﬂf’l:" 7?)'—_ Z—_—'_—P(xli"';xﬂ;ply"'!ﬁﬂ)

v Wy 0%

_ (11)
+f . -fdjl-- CdjuP (w1, -y 5w Pr iy e e e Pab (-
Ju o gn)
where J(xi, - - -, %a3 1, < © +, Ju) can be interpreted as the probability of a
jump in the momenta with the amounts ji, - - -, j. for the configuration
xy, - - -, %z. The probability of this jump is given by
J(@1, 0y a3 Juy oy Ja)

— e [ o e st
— V(x1— y1, -+, % — Ya) Jem @HUB @iivteFynin) (11a)

that is, by the Fourier expansion coefficients of the potential V{x;, - - -, x,).

This form clearly shows the quantum mechanical nature of our P: the mo-
menta change discontinuously by amounts which would be half the momenta
of light quanta if the potential were composed of light.?® To derive (11) one
can insert both for P and J their respective values (5) and (11a) on the right
hand side of (11). In the first term one can replace pe?iPrut -+ +rnwlih by

2 Cf, F. Bloch, Zeits. f. Physik 52, 555 (1929).
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(h/24)(8/dy)e¥imwyt -+ +enu)lh and then perform a partial integration with
respect to y;. Then one can replace the differentiation with respect to y by

differentiation with respect to », upon which some terms cancel and the rest
goes over to

h O (@1, -+ v Fatya)*
zkja;z .. .fdyl B dy,.[ ,6xk2 ! Y(x1=1, - * *, %n—Yn)
O (%1 — 31, * * ) X — Ym
Wt gy g0) T )}“‘”‘”‘*”'*”"“”" (12)
Xk

which is just what we need for the left side of (11). By integrating the second
term on the right side of (11)

f-”fdyr--dyn\l/(xx-l-yl-“xn-l-yn)*'ﬁ(xx—yl"'xn—yn)

. f .. f dj1 -+ dfpe@HUMUPriDyct +(Prtin)yn]

1
.r”hn+1 f .. fdzl e dz" [V(xl + 21 Xn + z")
— V(% — 31« - 2 — 2,) Je2ileaivkes bz in) /b

with respect to 2 and j one gets because of the Fourier theorem?

(i/h)f~'-fdy1---dynwﬁ(xl-}-yx---xn+yn)*¢/(x1— Yi© Tn = Yn)
eilmmt APt [V 4 gy - - & A+ yn) — V(s — y1+ - @0 — ya)] (123)
and this gives the second part of the left side of (11).

3

So far we have defined only a probability function for pure states, which
gives us the correct expectation values for quantities f(p, - - p.)-+
g(x; - - - x,). If, however, we have a mixture,* e.g., the pure states ¥, ¥,
¥s, « - - with the respective probabilities wi, ws, ws, - - - (with wi+ws+w;+

-+ - =1) the normal probability calculation suggests a probability function

P(xl: R PI: e ;Pn) = Zw)\Pl(xh Sy Xpy ':pN) (13}
A

where P, is the probability function for y,. This probability function gives
obviously the correct expectation values for all quantities, for which (5) gives
correct expectation values and therefore will be adopted.

For a system in statistical equilibrium at the temperature T'=1/k3 the
relative probability of a stationary state y» is e~#%x where E\ is the energy of
¥n. Therefore the probability function is a part from a constant

3 Cf. e. g., R. Courant und D. Hilbert, Methoden der mathematischen Physik I, Berlin
1924. p. 62, Eq. (29).

4 J. v. Neumann, Gétt Nachr. 245, 1927. L. Landau, Zeits. f, Physik 45, 430 (1927).
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P(xl"'xn,pl"'

Zf fdyl'--dynxl/x(x1+y1-~xn+yn)*

PO (x) — Y10 ¢ Xy — Yp)eXiriit o Feavd [k (14)

Now

2o (e w)* f(E) ¥ (o1 - 05

is that matrix element of the operator f(H), (H is the energy operator) which
isin the %, - - + u, row and v1 - - - v, column. Therefore (14) may be written
as

P(xi- - %ny p1v - Do)

o0
= f - f dyy - v o AynetlEt v prt Gty ol Mg BH ]
o

Loz Pyt (mnund pal B (15)

so that we have under the integral sign the x4y, « -« Xadyn; 21—~y - -
Xn—~Yn element of the matrix e~%H transformed by the diagonal matrix
eitryzt - +emzdih | Instead of transforming e~## we can transform H first and
then take the exponential with the transformed expression. By transforming
H we get the operator (the  are numbers, not operators!)

A 9?
H — ei(z,ﬂ1+-..+znpn)/h<__ Z PR + V(xl v xn)>e—-i(zlpx+-.-+rn17n)/h

k 2m;¢ 3xk

which is equal to

~ . [ikpr 9 hr 92
H=¢+ ( — > 16
kgl mp 6961; ka axk2 ( )
where
n sz ‘
€= E +V(x1:"':xn)- (17)
k=1 2my
So we get for (15)
P(xly"')xﬂ;ﬁls"',Pﬂ)
f fdyl - dynle ]51'*"”1"'=n+1ln‘-51—‘lll"'zn—lln' (18)
By calculating the mean value of a quantity Q=f(p1, - * -, pn) -+ (&1, * - -, %)

by (18) one has to obtain the same result as by using the original expression
(4) of Neumann,

If we are dealing with a system, the behavior of which in statistical equilib-
rium is nearly correctly given by the classical theory, we can expand (18)
into a power of i and keep the first few terms only. The term with the zero
power of % is D _.(—@B)7e"/r! Now € is the operator of multiplication with the 7
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power of (17). Its xy4y1, + + -, Xudyu; 21~91, -+, X — 7V~ element is con-
sequently

E(x1 + Ym0 0 % + yﬂ)ra(xl + M, %1 — y1> et a(xn + Yay Xn — yn)'

As 3 (also §’, 8’/, - - - ) only depends on the difference of its two arguments,
one can write § (—2y,) - - - §(—2y.) for the last factors and perform the
integration by introducing —2y;, - - -, —2y, as new variables. The terms
with the zero power of %, arising from the first part of (16) only, give thus

(1/2") Z(— B)re(xlx Tty xn)r/r! = 6—56/215 (19)

which is just the classical expression.

The higher approximations of the probability function can be calculated
in a very similar way. The terms of e~#7 involving the first power of the
second part of H only, are

> sy <ih‘b $ 0B i)e'-" (20)

re0 r! p=1 k My O0Xg ka ax;}

By replacing all operators by symbolic integral-kernels one gets for the

X4y, -, XndYa; ¥1—1, - -, ¥ — Yy, element of the operator (20)
(=B ¢
Z rl Ze(xl + Y1, "y %n + yn)”“l
r . p=1
ihj)k
B[S s g0 2 o 20
k mE
h2
T om 8(— 2y1) » - - 8(— 2y) - - - 8(— 2yn)]'=(xl s ZURIRRIE Sl M L
k

Now

r

» r o1 — r
€4 €4 €
E 6+ﬂ“15~"“ﬂ — E e_"“l(-—-) = —————

pe=l p=1 €_ €y ™ €.

so that the summation over p and 7 can be performed in (21). By introducing
again new variables wi, - - -, w, for —2y(, - - -, —2y, and performing the
integration one has

L s [ihpk k@ ]
A m; 0wy 2m, 6wk2

P I CITITRRT o L JORRU S R T COMERUY S SV YL EESEY

€(x1,“',xk'—%Wk,"',xn)—e(xl,"',xk'J{—%wk,"',xn)

where w;=0 must be inserted after differentiation. The first differential
quotient vanishes at w; =0, as the expression to be differentiated is an even
function of w.. The second part gives
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ePe h B? 9% B3/ ¢ \?
PAIED)  w
2n k Mg 8 duxp? 24\ x;
In principle it is possible to calculate in the same way the terms involving the
higher powers of the second part of A also, the summation over 7 and the
quantities corresponding to our p can always be performed in a very similar
way. In practice, however, the computation becomes too laborious. Still it is
clear, that if we develop our probability function for thermal equilibrium in
a power series of &

Pla, - oy oy pry w0y ) = 6P hfy o+ Byt (22)

(we can omit the factor 1/2" before ¢~#¢, as we are dealing with relative prob-
abilities anyway) all terms will be quite definite functions of the £, ¥ and the
different partial derivatives of the latter. Furthermore it is easy to see, that
fx will not involve higher derivatives of V than the k-th nor higher powers of p
than the k-th. These facts enable us to calculate the higher terms of (22) in a
somewhat simpler way, than the direct expansion of (18) would be.

The state (22) is certainly stationary, so that it would give identically
dP/dt=0 when inserted into (8). By equating the coefficients of the different
powers of 4 in 9P /0t to zero one gets the following equations:

D 0e™Pe oV deFe
—_—— — =0 (23, 0)
b mr 0%k r O0xp 9Py
0 av 3
Z_ﬁ.&+ Z___j:l_=0 (23, 1)
k mr 0% x 0%k Opu
af av d 93V h? Q% Fe
— f_k hcks + Z . _‘[i _ .

& my 0%y r 0%k 6)pk % 0xid 24 ap,ﬁ
3% hE Qe e 0

b=l 0xP0x; 8 9piopy

and so on. The first of these equations is an identity because of (17), as it

must be; (23, a), (23, 2), - - - will determine fi, fy, + - - respectively. All Eqgs.

(23, a) are linear inhomogeneous partial differential equations for the un-

known f. From one solution f, of (23, a) one obtains the general solution by
adding to it the general solution F of the homogeneous part of (23, a), which

is always

(23, 2)

pr OF oV 9F
SRR S =0

% my Oxg v Oxg Opy

This equation in turn is the classical equation for the stationary character of
the probability distribution F(xi, - - -, %n; p1, - - -, $»). It has in general
only one solution which contains only a finite number of derivatives of V,
namely

F(xly"':xn;Ph"':pﬂ)=F<Z jk +'U(x1x")>=F(€)

k My

In fact, if it had other integrals, like
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F(pr, -+, pu; V,0V /0%y, 0V /02y, - - ) (24)

then all mechanical problems would have in addition to the energy-integral
further integrals of the form (24) which, of course, is not true.

One solution of (23, 1) is f; =0 and the most general we have to consider is
therefore f; = F(e). We have to take however F(¢) =0 as f; has to vanish for
a constant V. So we get fi=0, as we know it already from the direct expan-
sion of (18). The same holds consequently for f3, fs, - - -, as the inhomogene-
ous part of the equation for fs only contains fi, the inhomogeneous part of the
equation for f5 only f1 and f3, and so on.

For f, one easily gets

fo = e‘ﬁ'[ Z(_ g oW N g /6V>2>+ 3 Bhupr OV ] (25)

2 8my  dxi? 24mk\6x_k k1 24mpm; dxpdxy

as a solution of (23, 2) and it is also clear, that this is the solution we need.
The first two terms of f; we have already directly computed (21), the third
arises from terms with the second power of the second part of H. Similarly
fais for one degree of freedom (n=1)

64m?B2 ¢f, = H(q) [82V""*/72 — BV /120]
+ Hy(g) 82V /18 — 262V""2/15 — B2V'V'"' /15 + BV /15)
+ Ho(q) [B4V'4/18 — 22B3V'2V"' /45 + 282V"'2/5 + 882V'V'"" /15
— 48V /15]

(26)

where H, is the 7-th Hermitean polynomial and g =8'2p/(2m)/2,

It does not seem to be easy to get a simple closed expression for fi, but it is
quite possible to calculate all of them successively. A discussion of Eqgs. (23)
shows, that the g in

Pty v vy n; pry v ooy p) = P+ Biga + Blga+ - ) @7

are rational expressions in the derivatives of V only (do not contain V itself)
and all terms of g; contain % differentiations and as functions of the p are
polynomials of not higher than the k-th degree. The first term in (27) with
the zero power of % is the only one, which occurs in classical theory. There is
no term with the first power, so that if one can develop a property in a power
series with respect to %, the deviation from the classical theory goes at least
with the second power of % in thermal equilibrium. One familiar example for
this is the inner energy of the oscillator, where the term with the first power of
k vanishes just in consequence of the zero point energy. The second term
can be interpreted as meaning that a quick variation of the probability func-
tion with the coordinates is unlikely, as it would mean a quick variation, a
short wave-length, in the wave functions. This however would have the con-
sequence of a high kinetic energy. The quantum mechanical probability is
therefore something like the integral of the classical expression e~#¢ over a
finite range of coordinates of the magnitude ~#%/$ where p is the mean mo-
mentum ~(kTm)!2. The correction terms of (27) have, among other effects,
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the consequence that the probability for a particle being in a narrow hole is
smaller than would be in classical statistics. From now on we will keep only
the first two terms of (27).

4

From (25) one easily calculates the relative probabilities of the different
configurations by integration with respect to the p:

f"'fdpl"'dPnP(xl“'xn;Pl"'Pn>

P I N T A B

Mk axk 24 T mp\0x;

Hence the mean potential energy is

1 0w
f Ve dx f > — edx f Vetdx
= thz k Mg axk2

+
24 2
f e BVdx < f e FVdx )

(29)
1 9
f > — 1 — 8V)edx
g kB ¥ mi 0xi®
24
fe"‘”’dx
where dx is written for dx, - - - dx, and the higher power terms of % are
omitted. Similarly the mean value of the kinetic energy is
1 9
. [ L2 e,
: - 7 %2? o - (30)
ot 2 f de

This formula also is correct only within the second power of %; in order to
derive it one has to perform again some partial integrations with respect to
the x. Egs. (28), (29), (30) have a strict quantum mechanical meaning and
it should be possible to derive them also from (4). One sees that the kinetic
energy is in all cases larger than the classical expression 1nkT.

5

One fact still needs to be mentioned. We assumed that the probability
of a state with the energy E is given by ¢ #E. This is not true in general, since
the Pauli principle forbids some states altogether. The corrections thus intro-
duced by the Bose or Fermi statistics even give terms with the first power of
h, so that it seems, that as long as one cannot take the Bose of Fermi statis-
tics into account, Eq. (25) cannot be applied to an assembly of identical par-
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ticles, as, e.g., a gas. There is reason to believe however, that because of the
large radii of the atoms this is not true and the corrections due to Fermi and
Bose statistics may be neglected for moderately low temperatures.

The second virial coefficient was first calculated in quantum mechanics by
F. London on the basis of his theory of inneratomic forces.’ He also pointed
out that quantum effects should be taken into account at lower tempera-
tures. Slater and Kirkwood® gave a more exact expression for the inneratomic
potential of He and Kirkwood and Keyes” calculated on this basis the classi-
cal part of the second virial coefficient of He. H. Margenau® and Kirkwood?
performed the calculations for the quantum-correction. The present author
also tried to calculate it by the method just outlined. He got results, which
differ from those of Margenau and Kirkwood in some cases by more than
100 percent.’® It does not seem however to be easy to compare these results
with experiment, as the classical part of the second virial coefficient is at low
temperatures so sensitive to small variations of the parameters occurring in
the expression of the interatomic potential, that it changes by more than
20 percent if the parameter in the exponential (2.43) is changed by % percent
and it does not seem to be possible to determine the latter within this accu-
racy.

& F. London, Zeits. f. Physik 63, 245 (1930).

¢ J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931).

7 J. G. Kirkwood and F. G. Keyes, Phys. Rev. 38, 516 (1931).

8 H. Margenau, Proc. Nat. Acad. 18, 56, 230 (1932). Cf. also J. C. Slater, Phys. Rev. 38,
237 (1931).

¢ J. G. Kirkwood, Phys. Zeits. 33, 39 (1932).

10 ] am very much indebted to V. Rojansky for his kind assistance with these calcu-
lations. The reason for the disagreement between our results and those of Margenau and Kirk-
wood may be the fact that they did not apply any corrections for the continuous part of the
spectrum,

In a paper which appeared recently in the Zeits. {. Physik (74, 295 (1932)) F. Bloch gets
results which are somewhat similar to those of the present paper. (Note added at proof.)
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ON THE PRINCIPLES
OF ELEMENTARY QUANTUM MECHANICS

by H. J. GROENEWOLD

Natuurkundig Laboratorium der Rijks-Universiteit te Groningen

Summary

Our problems are about

o the correspondence a <—> a between physical quantities 4 and quan-
tum operators a {quantization) and
B the possibility of understanding the statistical character of quantum

mechanics by averaging over uniquely determined processes as in classical
statistical mechanics (interpretation).

o and 8 are closely connected. Their meaning depends on the notion.of
observability.

We have tried to put these problems in a form which is fit for discus-
sion. We could not bring them to an issue. (We are inclified to restrict
the meaning of « to the trivial correspondence a — a (for lim 7 — 0) antl
to deny the possibility suggested in B).

Meanwhile special attention has been paid to the measuring process

(coupling, entanglement; ignoration, infringement; selection, measure-
ment).

For the sake of simplicity the discussion has been confined to elemen-
tary non-relativistic quantum mechanics of scalar (spinless) systems with
onc linear degree of freedom without exchange. Exact mathematical
rigour has not been aimed at.

1. Statistics and correspondence.

1.01 Meaning. When poring over
« the correspondence a <-—— a between observables a and the
operators a, by which they are represented in elementary quan-
tum mechanics,
B the statistical character of elementary quantum mechanics
(we need o for £), we run a continuous risk of lapsing into meaning-
iess problems. One should keep in mind the meaning of the concep-
tions and statements used. We only consider

405 —
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M, observational meaning, determined by the relation with what

is (in a certain connection) understood as observation,

M;: formal meaning, determined with respect to the mathematical

formalism without regard to observation.

Only M, is of physical interest, M; is only of academic interest.
Dealing with M; may sometimes suggest ideas, fruitful in the sense
of M,, but may often lead one astray.

1.02 Quantization. Very simple systems suffice for demonstrating
the essential features of « and g. In elementary classical point me-
chanics a system is described by the coordinates ¢ of the particles
and the conjugate momenta p. We only write down a single set p,g,
corresponding to one degree of freedom. Any other measurable
quantity (observable) a of the system is a function a(p,q) of  and ¢
(and possibly of the time ¢). The equations of motion can be express-
ed in terms of Poisson brackets

(a,b) =3 (1.01)

When the same system is treated in elementary quantum me-

chanics, the (real) quantities a are replaced by (Hermitian)

operators a, which now represent the observables. In the equations

of motion the Poisson brackets (1.01) are replaced by the ope-
rator brackets

[a,b] =% (ab—Dba) (h:zﬁ, h Planck’s constant of action). (1.02)
'

Problem «; is to find the correspondence a — a (other problems
« are stated further on).

1.03 Statistical character. The statements of quantum mechanics
on observations are in general of statistical character. Problem 8 is
whether the statistical quantum processes could be described by a
statistical average over uniquely determined processes (statistical
description of the Ist kind, type S') or not (statistical description of
the 2nd kind, type 5?). The observability of the uniquely determined
processes may be required (proper statistical description, type S,) or
not (formal statistical description, type S;). (Classical statistical
mechanics, e.g. are properly of the Ist kind, type S;).

1.04 Transition operator. Before going on we have to deal for a
moment with the operators and the wave functions.
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The Her mitian operators a form a non-commutative ring. The
normalized elements (wave functions) of (generalized) Hilbert
space on which they act from the left are denoted by ¢,, the adjoint
elements on which they act from the right are denoted by ¢!,. Unless
otherwise stated the inner product of ¢}, and ¢, is simply written
Lo, The outer product of ¢}, and ¢, defines the transition operator

k,, = <pv<pL, kI# = Kk, (1.03)

Take a complete system of orthonormal wave functions ¢,. The
orthonormality is expressed by

OLey = Sy, (1.04)
Z o0, = 1. (1.05)
n

the completeness by

In continuous regions of the parameter u the Weierstrasz
3-symbol must be replaced by the Dirac 8-function and the sum
by an integral. (1.04) and (1.05) show that every (normalizable)
function ¢ can be expanded into

@ = ;L'f“ ¢u With f, = ¢ o. (1.06)
k,, and k], transform ¢, and ¢}, according to
K, 0. = ¢,3,, and ch:kf,P’ = 8#'#@2 (1.07)
(that is why they are called transition operators). (1.04) gives
kp.vky'/_l.' = k“"'sw'. (1.08)

In particular k,, and k,, are for p # v orthogonal projection
operators (belonging to ¢, and ¢, respectively).

The trace of an operator a (resulting when a acts towards the
right upon itself from the left, or opposite; when it bites its tail)
is (according to (1.05)) defined by

Tra = 2 ¢}, a ¢, (1.09)
“

(Because the right hand member is invariant under unitary trans-
formations of the ¢, this definition is independent of the special
choice of the complete orthonormal system of ¢,). This gives

Tr(k,2) = 9L a @, (1.10)

(1.04) and (1.05) can be written
Trk,, = 3,,, (1.11)
Zk,, =1 (1.12)

"
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and further imply
Tr(k,Kyw) = 88,0, (1.13)
Ekar(kwa) = a (for every a). (1.14)

(1.13) and (1.14) show that every operator a (with adjoint a') can
be expanded into

8=k, with o, = Trlk,a). (1.15)

a,, 1s the matrix element (1.10) of a with respect to ¢, and ¢,.
It follows further that if 77(ac) = O for every a, then ¢ = 0 and
therefore (1.14) is equivalent to

X Trik,,b) Tr(k,a) = Tr(ab) (for every a and b). (1.16)
v

Further
Tr(ab) = Tr(ba). (1.17)

When a i1s a Hermitian operator

a'=a, of =a, (1.18)

(the asterik denotes the complex conjugate), the system of eigen-

functions ¢, with eigenvalues a,

ag, = a,9, (1.19)
can serve as reference system. In this representation (1.15) takes the
diagonal form

a = % aKp (1.20)
1.05 Statistical operator ). The quantum state of a system is said
to be pure, if it is represented by a wave function ¢,. The statistical
operator of the state is defined by the projection operator k,,, of ¢,.
We will see that the part of the statistical operator is much similar
to that of a statistical distribution function. The most general quan-
tum state of the system is a statistical mixture of (not necessarily
orthogonal) pure states with projection operators k,, and non-
negative weights k,, which are normalized by
E B, = 1. (1.21)
(In some cases the sum diverges and the right member actually
should symbollically be written as a 3-function). The statistical
operator of the mixture is (in the same way as it would be done for
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a distribution function) defined by

k=% kky,, (1.22)
#

and because of (1.21) normalized by
Trk = 1. (1.23)

(we will always write 1 for the right member, though in some cases
it actually should be written as a 3-function). For brevity we often
speak of the state (or mixture) k.

An arbitrary non-negative definite normalized Hermitian ope-
rator k (T7k = 1) has non-negative eigenvalues &, for which 2k, =1

. . .. K

and corresponding eigenstates with projection operators k.. There-
fore k can according to (1.20) be expanded in the form (1.22) and
represents a mixture of its (orthogonal) eigenstates with weights
given by the eigenvalues.

The statistical operator k,,, of a pure state is from the nature of
the case idempotent (kZ, = k,,). If on the other hand an idempotent
normalized Hermitian operator k is expanded with respect to

its eigenstates k,, with eigenvalues %,, we get

R=K K=k k=1 Zk=] (1.24)

so that one eigenvalue %, 1s 1, all other are 0. Then K is the projection
operator of the pure state o,

k =k, (1.25)

Therefore pure states and only these have idempotent statistical
operators.

Suppose the normalized statistical operator k of an arbitrary
quantum state is expanded in some way into other normalized (but
not necessarily orthogonal) statistical operators k, with non-nega-
tive weights &,

k=2XkKk,; & >0 (1.26)

This gives
k—K? =Xk (k,—k?) + § Z hk(k —k)2  (1.27)

If we expand with respect to pure states k, (k? = k,), (1.27) be-
comes

k —k? = } T k& (k, — k)% (1.28)
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This shows that k — k? is a non-negative definite operator. If the
given state is pure (k? = k) all terms at the right hand side of (1.27)
(which are non-negative definite) must vanish separately. For the
terms of the first sum this means that all states k with non-vanish-
ing weight (%, > 0) must be pure, for the terms of the second sum it
means further that all these states must be identical with each other
and therefore also with the given state (k, = k). The given state is
then said to be indivisible. If the given state is a mixture, k — k2
must be positive definite. Then at least one term at the right hand
side of (1.28) must be different from zero. This means that at least
two different states k, and k; (k, # k) must have non-vanishing
weight (k, > 0, &, > 0). The given state is then said to be divisible.
Thus pure states and only these are indivisible. This has been proved
in a more exact way by von Neumann?).

1.06 Observation. In order to establish the observational meaning
M,, one must accept a definite notion of observation. We deal with
3 different notions:

O,: the classical notion: all observables a(p,q) can be measured
without fundamental restrictions and without disturbing the system,

Oy the quantum notion (elucidated in 2): measurement of an ob-
servable, which is represented by an operator a, gives as the value
of the observable one of the eigenvalues a, of a and leaves the system
in the corresponding eigenstate k,, (cf. (1.20)); if beforehand the

system was in a state k, the probability of this particular measuring
result is Tr(kk

).

Suppose for a‘;’r‘loment that the statistical description of quantum
mechanics had been proven to be formally of the Ist kind S} but
with respect to O, properly of the 2nd kind SZ. Then (if any) the
only notion, which could give a proper sense to the formal descrip-
tion, would be

0, the utoptan notion: the uniquely determined processes are
observable by methods, hitherto unknown, consistent with and
complementary to the methods of O,.

With respect to quantum theory classical theory is incorrect,
though for many purposes it is quite a suitable approximation (for
lim i — 0). With regard to the utopian conception quantum theory
would be correct, but incomplete. In this a description is called
correct if none of its statements is in contradiction with observa-
tional data. It is called complete if another correct description,
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which leads to observable statements not contained in the given
description, is impossible. This need not imply that all possible
observational statements can be derived from a complete theory.

1.07 T he fundamental controversy. Problem B intends to state cer-
tain aspects of the well known controversy about the statistical
character of quantum mechanics in a form fit for a reasonable dis-
cussion. Such a discussion is only possible as long as the theory is
accepted as essentially correct (or rejected and replaced by a more
correct theory). The completeness of the theory may be questioned.

The physical reasonings of Bohr a.o. and the mathematical
proof of von Neumann?) (reproduced in 1.08) have shown
that (with respect to O,) the statistical description of quantum me-
chanics is properly of the 2nd kind 5%, (problem #,). Yet many of the
opponents did not throw up the sponge, some because they did not
grasp the point, others because they perceived a gap in the reasoning.
It seems that a great many of the escapes (as far as they consider
quantum mechanics as essentially correct) debouch (if anywhere)
into an expectation, which either is already contented with a formal
statistical description of the 1ste kind S}, or moreover hopes to give
such a description a proper sense of type Si, by proclaiming the
utopian notion of observation 0,. The examination of this concgp-
tion is problem B,.

Even if one did (we could not satisfactorily) succeed in proving
the formal impossibility of type S} (and consequently of type S..),
many of the opponents would not yet strike the flag. We have al-
ready gone to meet them in trying to formulize some of their most
important objections in a form fit for fruitful discussion. It would be
like flogging a dead horse in trying to do so with all vague objections
they might possibly raise. Actually that is their own task. If they
succeed in doing so, we try to prove the impossibility, they try to
find the realization of their (formal or proper) expectations. Formal
expectations can be realized by a formal construction, proper ones
also require the realization of the type of observations from which
they draw their observational meaning. As soon as the opponents
succeed in finding a realization, we will (formally or properly) be
converted (but not a minute before). As often as we succeed in prov-
ing the impossibility, some of the opponents may formulize (if
anything) new objections for ever. At best they might be compelled
to retreat step by step, they could never be finally vanquished. It
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may also happen that nobody succeeds in going further. Thus
because of running on an infinite track or into a dead one, the con-
troversy may be left undecided. Meanwhile we expect that in dn
infinite regression the opponents objections will lose more and more
interest after every retreat.

1.0B von Neumann's proof. The only states with a meaning
M,, with respect to quantum observations 0, are quantum states
(pure states or mixtures). Therefore in a statistical description of the
Ist kind SI, a quantum state should be described as a statistical en-
semble of quantum states. This is impossible for a pure state, because
such a state is indivisible (cf. 1.05). Then the statistical description
of quantum mechanics must (with respect to quantum observations)
be of the 2nd kind S%,. This is in our present mode of expression the
point of von Neumann’s proof!). It should be noted that in
1.05 the admission of non-negative probabilities only (non-negative
weights and non-negative definite statistical operators) is an essen-
tial (and natural) feature of the proof.

Now before going into the details of problem §,, we first turn to
problem « (we need «g for B,).

1.09 Correspondence a(p,g) <> a. In passing from classical to
quantum mechanics, the coordinate and momentum ¢ and §, for
which

) =1, (1.29)
are replaced by coordinate and momentum operators q and p, for
which

(pql =1 <i.e. pq—ap = ?) (1.30)

$ and g are the generating elements of the commutative ring of clas-
sical quantities a(q,p), p and q the generating elements of the
non-commutative ring of quantum operators a. The non-commuta-
bility (1.30) of p and q entails that the quantities a(p,q) cannot
unambiguously be replaced by a(p,q). The ambiguity is of the order
of %. The classical quantities a(p,q) can be regarded as approxima-
tions to the quantum operators a for lim % — O. The former can
serve as guides to get on the track of the latter. Problem «; asks for
arule of correspondence a(p,9) — a, by which the quantum operators
a can be uniquely determined from the classical quantities a(p,q).
In practical problems no fundamental difficulties seem to occur



119

ON THE PRINCIPLES OF ELEMENTARY QUANTUM MECHANICS 413

in finding the appropriate form of the required operators a. This
suggests the problem (not further discussed here) whether all or only
a certain simple class of operators a occur in quantum mechanics.

Suppose for a moment that all relevant quantum operators a had
been fixed in one or other way. Then one might ask for a rule
a — a(p,q), by which the corresponding classical quantities a(p, q)
are uniquely determined (problem «;). Problem «, would be easily
solved in zero order of %, ambiguities might arise in higher order.
Now (with respect to O,) the classical quantities have only a meaning
as approximations to the quantum operators for /im % — 0. There-
fore, whereas in zero order of 7 it is hardly a problem, in higher order
problem a5 has no observational meaning M,, (with respect to O,).

Problems «; and o, could be combined into problem «j3, asking for
a rule of one-to-one correspondence a(p,q) <— a between the clas-
sical quantities a(p,q) and the quantum operators a. Beyond the
trivial zero order stage in 7%, problem o3 can (with respect to 0,) only
have an observational meaning M,, as a guiding principle for de-
tecting the appropriate form of the quantum operators (i.e. as pro-
blem «,). A formal solution of problem o; has been proposed by
W e y12) (cf. 4.03). Weincidentally-come back to problem oz in 1.18.

1.10 Quantum observables. In this section a will not denote a clas-
sical quantity a(p,q), but it will stand as a symbol for the observable,
which (with regard to 0,) is represented by the quantum operator a.
According to O, two or more observables a, b,. . .. can be simultane-
ously measured or not, according as the corresponding operators
a, b,.... respectively do or do not commute i.e. as they have all
eigenstates in common or not. Problem o4 deals with the (one-to-one)
correspondence @ <— a between the symbols 2 and the operators a.
Problem a4 has no sense as long as the symbols @ are undefined. They
may, however, be implicitely defined just by putting a rule of cor-
respondence. (When the symbols a are identified with the classical
quantities a(p,q), problem «, becomes identical with problem oj).
Von Neumann?) has proposed the rules

if a <~ a, then f(a) <— f(a), I
ifa <—aandb «—- b,thena + b «—— a + b. II

/(a) is defined as the operator, which has the same eigenstates as a
with eigenvalues f(a,), where a, are those of a. Then I seems to be
obvious. The observable f(a) can be measured simultaneously with
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a, its value is f(a“), where a,, is that of . When a and b commute,
a + b has the same eigenstates as a and b with eigenvalues a, + b,,
where @, and b, are those of a and b. Then II seems also to be ob-
vious. @ + b can be measured simultaneously with a4 and b, its value
1s a, + b, where a, and b, are the values of 2 and . When a and b
do not commute, II is proposed with some hesitation. Because ac-
cording to O, the probability of finding a value a, for #in a state k is
Tr(kk,,) (and because of 1.20)), the expectation value (average
value) of a in this state is

Ex(a) = T Tr(kk,,)a, = Tr(ka) (1.31)
w

and similar for 4. If one requires that for a certain pair of observables
a and b always

Ex(a 4+ b) = Ex(a) + Ex(b), (1.32)
one must, because of
Tr(k(a + b)) = Tr(ka) 4+ Tr(kb), (1.33)
have that
Ex(a + b) = Tr(k(a + b)). (1.34)

Because this has to hold for all states k, a and b have to satisfy rule
II. When II is given up for certain pairs 4,b, the additivity of the
expectation values of these pairs has also to be given up.

In 4.01 it will be shown that, if I and II shall be generally valid,
the symbols 2 have to be isomorphic with the operators a. But then
there is no reason to introduce the former, their task (if any) can
be left to the latter. Accordingly for the sake of brevity we shall
henceforth speak of the (quantum) observable a.

When on the other hand, the symbols a are intended as real com-
muting quantities, the general validity of I and II cannot be main-
tained. As long as the symbols a are not further defined, problem
x4 comes to searching for a one-to-one correspondence a <— a
between the commutative ring of real symbols 2 and the non-com-
mutativering of Hermitia n operators a. There may be no, one or
more solutions. After the pleas for I and for II, one might be in-
clined to maintain 1 and to restrict II. In 1.13 we meet with a par-
ticular case (problem «g) for which IT has to be maintained and there-
fore I has to be restricted. Because we are further exclusively in-
terested in problem a5, we will not examine the possibility of solu-
tions for which I1 is restricted.



121

ON THE PRINCIPLES OF ELEMENTARY QUANTUM MECHANICS 415

1.11 Hidden parameters. We try to trace the conditions for the
assumption that the statistical description of quantum mechanics is
(at least formally) of the Ist kind S! (problem ). A statistical des-
cription S! must be obtained by statistical averaging over uniquely
determined processes. The averaging must be described by inte-
gration or summation over a statistical distribution with respect to
certain parameters. Unless they are further specified, we denote all
parameters by a single symbol £ and integration (including a pos-
sible density function) and summation over continuous and discrete
parameters by [ d%. Parameters, which are in no way observable with
respect to O, are called hidden parameters. (We exclude their oc-
curence in 1.15). Asa pure superstate we define a state for which all
parameters (inclusive the hidden ones) have a definite value.

1.12 Distributions. A quantum state must be described as an en-
semble of pure superstates. The statistical operator k of the quan-
tum state must correspond to at least one (non-negative definite)
distribution function k(Z) for the superstates. For each definite
value of £ all k(§) must have definite values and therefore must
commute. k(§) must be normalized by fd& k(§) = 1, so that with (1.23)

Trk = [ dg R(E). (1.35)
Further the correspondence must be linear
if kl <> kl(g) and kz <> kZ(E)’ then kl + k2 <> kl(a) +k2(£) (1 .36)

The observable (with respect to O,) represented by the statistical
operator k,, of a pure quantum state has the eigenvalue 1 in this
quantum state and O in all orthogonal states. The probability of
measuring in a system, which is originally in a quantum state k,
the value 1 (and leaving the system in the pure quantum state k)
is T7(kk,,). In a description of type S this probability must be in-
terpreted as the probability that any superstate belonging to the
ensemble with distribution function 2(g) corresponding to k also
belongs to the ensemble with distribution function £,,(E) corres-
ponding to Kk,,. The latter probability is /d& k(£)k,,(8). Therefore
the correspondence k <— k(£) must be so that always

Tr(kik;) = [ d By (E)ka(®). (1.37)
For two orthogonal states %, and %, this expression is zero, which

guarantees that the distribution functions %{(§) and &,(§) do not
overlap, provided they are non-negative definite.
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1.13 Superquantities. The expectation value of the observable a
in the quantum state k is because of (1.31) and (1.37)

= o1k, e, = 2/ dE hE) iy (E)a (1.38)

The right hand member of (1.38) can be interpreted as the average
value of a quantity a(§) = Z a,k,,(8) (defined as the superquantity
I

corresponding to the observable a) in the ensemble of superstates
with distribution function £(£). This is exactly the way in which the
expectation value should appear in a description of type S'. Thus
with the correspondence a «<— a(£) (which is a linear generalization
of k <—— £(£)) the expectation value of a in the state k can be writ-
ten

Trka) = [dE k(%) a(E). (1.39)

Comparison with (1.35) shows that the unit operator 1 has to cor-
respond to the unit quantity 1

1 «— 1. 111

By a further linear generalization of (1.39) we see that the cor-
respondence a <— a(f) must obey the rule

if a «— a(f) and b «— b(), then Tr(ab) = fd€ a(E) b(8). IV

Rule 1T is a consequence of rule IV (the necessity of 1I is evident
from the beginning, because average of sum = sum of averages).
Therefore rule I cannot be satisfied without restrictions.

Problem oy is how to establish the correspondence a «— a(g).
us 15, like o3, a special case of ay.

1.14 Equations of motion. The equations of motion for the quan-
tum states must be obtained from the equations of motion for the
superstates. The former are determined by the Hamiltonian
operator H (which may depend on time ¢) of the system according
to the equation of motion of the statistical operator k

dk

5 =—[HK (1.40)

(which 1s equivalent to the Schrddinger equation

hoee
7w e
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for pure quantum states). Because the correspondence k «— &(£)
is linear, we have

dk ak(&
(1.40) can be integrated into
L8 ot
k() = e—-,‘-‘.fd:' H(t) K(to) e;}{dwn(t') (1.42)
L ¢
(which is equivalent to ¢(f) = ¢ af @ Hen 9(fo) for pure quantum

states). If the superquantity corresponding to the bracket expres-
sion [a,b] is written ((a(£), b())) (the former and consequently also
the latter bracket expression is antisymmetrical), the equation of
motion of the distribution function &(£) reads

ak

) — — @, ho)). (1.43)
Because
j—Tr(ka)——Tr(—[Hk]a—}-ka—a =T (k(Ha]—}—ga (1.44
7 = ’ a7) = Tr(oal + 7)) 144

and correspondingly

%f g k(Z) a(8) =fdi (— (H(®), k) at) + kES _a“_a(?_>

—[azre (@@, a0y + 5L).

the dynamical time dependence can be shifted from the wave func-

tions ¢ and the statistical operators k (Schrédinger repre-

sentation) and the distribution functions k(£) to the operators a

(Heisenberg representation) and the superquantities a(Z).
Instead of (1.40), (1.43) we then get

da ©da
=2+ Hal, (1.46)
W) 2B (e, ai). (1.47)

For those parameters , which correspond to observable quantities
(with respect to O,) (1.47) must be valid and reads

d 14
L NG (1.49

Physica XII 27
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The equations of motion for the hidden parameters may be of a dif-
ferent form. When all parameters (inclusive the hidden ones) are

continuous, their equations of motion have to satisfy the condition
that when inserted in

da(§)  da(f) | Oa() df
i e T ®E dt (1.49)

(where the last term stands symbolically for a sum over all separate
parameters £), they must give (1.47).

We may summarize that, in order to give a statistical description
of the Ist kind, one would have to determine (only formally for
type S}, also experimentally for type S}) the parameters £ (inclusive
the hidden ones) and the density function, the (one-to-one or one-to-
many) correspondence a <—> a(£) (problem «g) and the equations
of motion for the hidden parameters (if there are any such), all
with regard to the imposed conditions.

1.15 Correspondence a «<— a(t). Because a non-Hermitian
operator a (with adjoint a') can be written as a complex linear com-
bination of Hermitian operators

a.—:%(a—}—a’f) +-21—1;-(ia——iaf),

the generalization of the correspondence a <— a(£) to non-Her-
mitian operatorsisuniquely determined. Now take the non-Her-
mitian transition operators k,,, which according to (1.13), (1.14)
form a complete orthonormal system in the ring of operators a.
For the corresponding functions k,,(§) we get corresponding to

(1.11), (1.12); (1.13), (1.14) and (1.15) (and using 111, IV and (1.03))
the relations

JAE k(€)= 3,4, (1.50)

E hul®) = 1; (1.51)
JAEKE(8) Ry (B) = 840 8,0, (1.52)
I hlf) BL(E) = 3E—¥) (1.53)

(8(£ — £’) stands for a product of 8-symbols for all parameters £ and
the inverse of the density function) and

a(§) = Eyaw Fu(€) with o, = fdg kL(E) a(f).  (1.54)
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(the «,, are the same as in (1.15)). These relations show, that the
functions a() can be regarded as elements of a (generalized)
Hilbert space, in which the k#v(E) form a complete orthonormal
system; (1.52) expresses the orthonormality, (1.53) the completeness.

We now show that the correspondence a <— a(£) has to be a
one-to-one correspondence. Suppose for a moment there are opera-
tors Kk, to which there correspond more than one functions k,,(£),
which we distinguish by an index p, k,,, <~ £,,,, ,(£). Then the ex-

pression
Z ./.d& kp.v, ( ) wv'; p(a) k[.t p"(g)

evaluated with (1 52 ) gives &, »(£'), evaluated with (1.53) it gives

Ry, p(&). Therefore %, (&) and %, ,(£") have to be identical. To
each operator a and only to this one there has to correspond one and
only one superquantity a(£). As a consequence the superquantities
a(t) must depend on the same number of parameters (at least if
they are not too bizarre) as the operators a, i.e. on twice as many as
the wave functions ¢.

Thus to each (normalizable) real function a(£) and only to this one
there corresponds one and only one Hermitian operator a, which
represents an observable quantity (with respect to O,). In other
words every real function a(&) is a superquantity. BecAuse this also
holds for the (real and imaginary parts of the) parameters £ them-
selves, none of them can be hidden in the sense defined above. (An
observable quantity may occasionally be inobservable in a measur-
ing device adepted to an incommensurable quantity; in this sense a
parameter may occasionally be hidden). In particular all parameters
must obey (1.48).

Comparing (1.15) and (1.54) we see that the correspondence
a <> a(k) can be expressed by

" a(f) = Tr(m()a), a = [ dEm(E)a(f), (1.55)
w1
m(E) = 3k, k5 (E); m'(£) = m(E). (1.56)

The Hermitian transformation nucleus m(£) satisfies the rela-
tions

Trm(E) =1, (1.57)
JdEm(E) =1; (1.58)
Tr(m(g) m(E’ )) 3£ —¥), (1.59)

Jdg Tr(m(E) a) Tr(m(E) b) = Tr(ab) (for everyaand b)  (1.60)
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(1.60) is equivalent to
S m(E) Tr(m(E) a) = a (for every a).

(1.59) expresses that m(£) is orthonormal with respect to the ring of
operators a, complete with respect to the ring of superquantities
a(g); (1.60) expresses the crossed properties.

If, on the other hand, a Hermitian transformation nucleus
m(g) satisfies the conditions (1.57), (1.58); (1.59), (1.60), the corres-
pondence (1.55) satisfies 111 and IV. We may either choose a com-
plete orthonormal system of k,,, satistying (1.11), (1.12); (1.13),
(1.14) and determine the corresponding system of £, (£), which then
satisfy (1.50), (1.51); (1.52), (1.53), or we choose the latter system
and determine the former one. In both cases m(£) can be expanded
according to (1.56).

1.16 Uniqueness. Now let us see whether the correspondence
a <— a(£) is uniquely determined by the conditions III and IV.
Suppose we have two different nuclei m’(§) and m”(§), depending
on the same parameter £ and both satisfying (1.57), (1.58); (1.59),
(1.60). When we choose for both the same complete orthonormal
system of k,,(£) satisfying (1.50), (1.51); (1.52), (1.53), we find two
corresponding systems of k,, and Kkj,, which each satisfy (1.11),
(1.12); (1.13), (1.14). Therefore the latter systems can be connected
by a unitary transformation

k,, = ukj, v, wuf =1; ki, =u'k,,u (1.61)
(expressed analoguous to (1.03) u can be written as 2 ¢y, ¢,1). The
©w

same unitary transformation connects the nuclei m’(§) and m" (&)
and also the statistical operators k” and K" corresponding to the
same distribution function k() and the operators a” and a’’ cor-
responding to the same superquantity (£). Then the single and
double dashed representations are isomorphous and in quantum
mechanics regarded as equivalent. Therefore, when the parameters
£ have been chosen, the correspondence a <—> a() (if there is any
correspondence) can be considered as unique. '

When we choose one set of parameters £ and another set of para-
meters v, the nuclei m(%) and m(y) (if there are any nuclei) can be
considered as uniquely determined. When we take a complete ortho-
normal system of k,,, satisfying (1.11), (1.12); (1.13), (1.14), we find
two corresponding systems of &,,(£) and k,(n), which each satisfy
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(1.50), (1.51); (1.52), (1.53). Then it follows that the superquantities
a’'(€) and a’’(7), corresponding to the same operator a are connected

by
a'(g) = fdnv(E;m)a"(n); a"(n) =[dEv(Em)a’(E), (1.62)
where the transformation nucleus
v(E; M) = Z R,(E) E(n); v(E; ) = v*(E; ) (1.63)
satisfies -
JaAEv(E; n) = [dnv(E;m) =1; (1.64)
JanoE; ) v M) =8E—E), SAEv(E;m) v(E; ) =3(n—mn"). (1.65)

The rings of a’(£) and of a"’(n) are not necessarily isomorphous.
When they are, we must have

Jf dn'dn"vE; 0o (E; 0")a" (n')0" (1) = [ dy v(E; n)a’ (n)6"'(n) (1.66)
for every a”(x) and 4”(v), which requires

v(€; n) v(&; n") = v(€; ) 3(n" —n") (1.67)
and similarly
o€ ) v(E”; M) = v(E;m) $(E —E”). (1.68)
The solutions of (1.67) and (1.68) have the form
v(E; ) = 3(n(&) — ) (1.69)
and
v(E';m) = 3E —E& ™), (1.70)

where (£) and £(x) are single valued functions. Because (1.69) and
(1.70) have to be identical, n(£) and &(n) have to be inverse to each
other with unit functional determinant

“I)-

a (E (1.71)
(it should be remembered that we symbolically write & or v for what
might be a whole set of parameters & or ). With (1.69), (1.70) we
get for (1.62)

@'(€) = a”((&); a"(n) = a'(n(€)). (1.72)

This shows that the transformation between two isomorphous re-
presentations a’(£) and a’’(x) can be regarded as merely a transform-
ation of the parameters. It further follows that, if the dynamical
conditions for (1.49) are fulfilled by one of these representations,
they are also fulfilled by the other one. Therefore isomorphous re-
presentations can be regarded as equivalent.
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When the solution v(£ ;) of (1.64), (1.65) is not of the form (1.69),
(1.70), the representations a’(§) and a''(x) are non-isomorphous.

1.17 Parameters. In 4.03 we derive a correspondence, satisfying
IIT and IV, in which the two independent parameters (denoted by
$ and ¢), which run continuously between — oo and + oo, corres-
pond to the operators p and q. This choice of parameters might seem
the most satisfactory one, as it is adapted to the fundamental part
played by the momentum and the coordinate. (By the way, because
momentum and coordinate cannot simultaneously be measured, ¢
may be regarded as occasionally hidden in a coordinate measure-
ment, ¢ similarly in a momentum measurement — or in a somewhat
different conception p may be regarded as occasionally hidden in
g-representation, g in p-representation; both $ and ¢ may be regard-
ed as occasionally partially hidden in other measurements or re-
presentations).

In 1.16 we have seen that for each choice of a complete orthonor-
mal system of k,,(p,q), satisfying (1.50), (1.51); (1.52), (1.53), there
must for every other representation with parameters § beasimilar
system of &,,(§) with the same set of indices w,v. That makes us ex-
pect that when £ stands for a set of not too bizarre continuous para-
meters, the latter can like p and ¢ be represented by two independent
real parameters » and s. We do not examine the validity of this ex-
pectation (which would be very difficult).

1.18 Bracket expressions. When these parameters 7 and s are also
independent of time, the consistency relation for (1.47), (1.48) and
(1.49) reads

Ba(r s

(#Hr9), atr,9) = 22 (11,9, ) + 0 (@19, 9) (173)

(for every al(r,s)).

When the superquantities H(r,s) corresponding to the Hamil-
tonian operators H are not restricted to functions of a too
special type, (1.73) requires (using the antisymmetry properties

((rs)) = — ((s7); ((r7) = ((s.5)) = 0)

((alr,s), blr,$)))=((r,5))(a(r,s), b(r,s)) (for every a(r,s) and b(r,s)), (1.74)
with the Poisson brackets (similar to (1.01}))
da(r,s) 0b(r,s) _ 0a(r,s) ob(r, s)

(alr,s), b(r,s)) = Ew s s or

(1.75)
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For the superquantities $(r,s) and ¢(r,s) corresponding to p and q
we get because of (1.30)

((p(r,9), q(7,8))) = ((r,5)) (p(7.9), q(7,5)) = L. (1.76)
Therefore (1.74) can also be written
(alr,s), blr,s))
(p(r,5), qlr,8)) "

This means that the correspondence a <— a(r,s) has to satisfy the
rule

((alr,s), b(r,8))) = (1.77)

i a<—afrs),b<«— brs) and p «— p(r,5), @ «<— g(r,9),

(alr,s), blr,s))
(p(r,8), qlr,s))

The analoguous derivation for the parameters p and ¢ gives

(independent of our unproved expectation about the parameters
r and s) the condition

if a «<— afpg)andb < b(p,g), then [a,b] «— (a(p.g), b(p.9)). V

For this choice of parameters problem «5 of the correspondence
between the superquantities a(p,q) and the quantum operators a
seems very similar to problem «; of the correspondence between the
classical quantities a(p,q) and the quantum operators a, by which
they are replaced in the procedure of quantization. The fact that in
this procedure the P oisson bracketsin the equations of motion are
replaced by operator brackets might suggest rule V' in problem «j.
If a solution of «3 satisfying rules ITI, IV and V' could be found, the
classical description could be regarded as the description of the uni-
quely determined processes in a statistical description of the lst
kind S. The utopian notion O, intended to proclaim these processes
as observable, would coincide with the classical notion O,. This would
not (as it might seem) exactly mean a return towards the old classi-
cal theory, which was regarded as incorrect (with respect to 0, and
therefore also with respect to O,, which regards O, as correct,
though incomplete), because one would have to deal with peculiar
distributions of classical systems. These distributions would have to
be responsible for quantization.

But such a solution cannot be found. In 4.02 we show that V' is
self contradictory (except for lim % — 0). Because V' already fails

then [a,b] \Y%
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for operators of occuring types, a restriction of the admitted opera-
tors could not help. Therefore a solution of problem «s with $ and ¢
as parameters, which satisfies the dynamical conditions, is impos-
sible, just as a solution of «3, which describes the quantization of the
classical equations of motion by the same rule as the quantization of
the classical observables.

This is in point of fact all we have been able to prove. Though p
and ¢ may seem the most satisfactory choice of parameters in a
description of type S!, the formal disproof of just this description
does not involve the impossibility of any description of type S}. A
complete proof of the impossibility of a description of type S} does not
seem simple and neither does the construction of such a description.

For a pair of continuous time independent parameters 7 and s
condition V would have to be satisfied. When the commutator of
r and s commutes with 7 and s, V is self contradictory just like V.
It is doubtful whether V can be consistent in other cases. A pair of
continuous time dependent parameters r{¢) and s(t) must at every
time ¢ be unique single-valued functions of the initial values 7(4,) and
(o) at an arbitrary time 4,. Then instead of the time dependent 7(¢)
and s(¢) the time independent 7(¢,) and s(fy) can serve as parameters.
Therefore, if our expectation about continuous parameters is justi-
fied, the difficulty for such parameters lies mainly in the consistency
of V. It is difficult to see how parameters with entirely or partially
discrete values or of too bizarre continuous type could give a satis-
factory description of type S'.

There are still more difficulties for a description S! as we will see
in a moment.

1.19 Quast-statistical description. Whereas it is doubtful whether
the dynamical condition V can be fulfilled, conditions 111 and IV can
be satisfied without much difficulties. With a solution of the latter
conditions only, one can construct a quasi-statistical description of
the Ist kind Q!, which looks very similar to a formal statistical
description of the Ist kind S}, but in general does not satisfy the
dynamical (and, as we will see in a moment, other necessary) con-
ditions. A solution of IIT and IV gives according to (1.39) the correct
average values. But the real distribution function k(&) corresponding
toa Hermitian non-negative definite statistical operator k of a
quantum state (pure state or mixture) is in general not non-negative

definite.
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The difficulty of interpreting negative probabilities might perhaps
be surmountable, at least in formal sense M. Meanwhile, according
to the remark following (1.37), it is no longer guaranteed, that the
distribution functions %,(£) and £,(E) corresponding to orthogonal
quantum states k; and k, do not overlap. And overlapping of such
distribution functions it not allowed by the notion of quantum ob-
servability O,. We see this in the following way. Suppose we subject
the system repeatedly to a measurement, which distinguishes be-
tween the states %, and %, (and other orthogonal states). When after
one measurement the system is left in the state %, the probability
of finding it after a repeated measurement in the state k, is O
because of (1.37). In the quantum mechanical interpretation this
means absolute certainty of not finding the state %,. In the quasi-
statistical interpretation the zero value for the right hand member
of (1.37) results from integration of positive and negative probabili-
ties over the region of overlapping. Integration over a statistical
distribution refers to a great number of measurements. In a proper
statistical description of the 1st kind S! the absolute certainty of not
finding the state &,, even in a single measurement, can only be esta-
blished if no superstate occurring in the ensemble %,(&) can also occur
in the ensemble %,(E), 1.e. if () and £,(%) do not overlap.

Therefore in order to find a statistical description of type S}, one
would have to satisfy not only conditions IT, IV and V (or another
dynamical condition), but also the condition that the distribution
functions of quantum states are non-negative definite, or at least
that the distribution functions of orthogonal states do not overlap.
This task does not look very promizing.

We incidentally remark that in any representation of type Q!
either of the two parameters can be treated as occasionally hidden.
Already after integration over this one parameter we get the quan-
tum mechanical formalism in the representation of the other para-
meter. In particular no negative probabilities are left.

In 4.03 we derive a particular solution (W e y I's correspondence)
of IITand IV with parameters p and ¢ and in 5 we discuss the quasi-
statistical description Q! to which it leads. We do so not only for the
sake of curiosity, but also because it is very instructive to those
opponents in the fundamental controversy, who have a description
of type S' (similar to that of classical statistical mechanics) vaguely
in mind. A description of type Q! might be the utmost (though
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rather poor) realization of such foggy ideas. (The mysterious hidden
parameters then turn out as ordinary, occasionally inobservable-
observables). Such a description clearly shows the obstacles (equa,
tions of motion; non-negative probabilities or non-overlapping
distributions) at which all such conceptions may be expected to
break down.

So far the general line of reasoning. Before dealing further with
correspondence in 4, for which we need the operator relations of 3,

we review in 2 the measuring process in terms of the operator re-
presentation.

2. The measuring process.

2.01 Deviation. Quite apart from the interpretation of 1.10, the
expectation value of a quantum observable a in a quantum state k
is given by (1.31) or

Ex(k; a) = Tr(ka). (2.0n)
Further the deviation of this observable in this state is defined by
Dev(k; a) = Ex(k; (a—1Ex(k; a))?) = Tr(k(a — 1T7r(ka))’) =
= Tr(ka?) — (Tr(ka))®. (2.02)
First we review some consequences of this definition, detached of
any interpretation.

It can be seen from the inner members of (2.02) that the deviation

is non-negative. We form the transition operators k,,, (1.03) of the

complete system of eigenfunctions ¢, of a with eigenvalues a,
and expand Kk according to (1.15) as

k = ¥ %, k,, withx,, = Tr(k,, k). (2.03)
[IR%
The normalization of k (77k = 1) gives with (1.11)
Zon, =1 (2.04)

s
Then (2.02) gives

Dev(k;a) = Z Yo A5 (Z Lup a,)? =} T xuu v, (@, — a,)? (2.05)
TR
If k is a pure state with wave function ¢, we have
o = Tr(K,, K) = | ol g% (2.06)

%y 1S then non-negative and (2.05) can only be zero, if ¢ is a linear
combination of eigenfunctions ¢, all with the same eigenvalue a,.
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If the normalized quantum state k (pure state or mixture) can be
written as a mixture of other normalized states k, with weights %,

k=3kk,: kb >0, Tk =1, (2.07)

(2.02) gives
Dev(k; a) = Z k, Tr(k,a?) — (X k,Tr(k,a))?

= Sk Devlk,;a) + 3 Sk, k(Ex(k,;a) — Ex(k,;2))%.  (2.08)

The deviation of a in the state k is therefore only zero, if all occuring
states Kk, (£, > 0) in the mixture give zero deviation and the same
expectation value for a. Taking for the k, pure states (the eigen-
states of k), we see that a is only deviationless in the state k, if the
latter is a pure linear combination or a mixture of linear combina-
tions of eigenstates of a all with the same eigenvalue.

Because one can easily find two non-degenerate quantum opera-
tors (i.e. quantum operators with no more than one eigenstate for
each eigenvalue), which have no eigenstates in common (e.g. p and
q), there can be no quantum states in which all observables have
zero deviation (deviationless states) ). Here might seem to lie the
reason why the observational statements of quantum mechanics
are in general of statistical character. No doubt there is some con-
nection, but this rapid conclusion should not be taken too rashly,
because it implies an interpretation of the deviation, which is not
entirely justified. Let us turn to this interpretation.

In a statistical description of the Ist kind S! the deviation of a
quantity « is defined by

Dev(a) = Ex((a — Ex(a))?) = Ex(a®) — (Ex(a))®.  (2.09)

In an ensemble, in which this deviation is zero, a must have the
same value in all samples. Then it follows that for every function f(a)

Ex(j(@) = {(Ex(a)). (2.10)
Whereas in general a has a proper value only in a sample and in an
ensemble only an average value (expectation value), one can speak
of the proper value of 4 in an ensemble if the deviation is zero.

In quantum mechanics it is not entirely clear what is meant by
the square or another function of an observable. In order to discuss
things, let us have recourse for a moment to the notion of 1.10 and
let a stand for the observable represented by a(a <—> a; problem
4). Then (2.09) is only identical with (2.02) for all states k if
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a* < a% Further we have seen that a state k, in which (2.02) is
zero, must be a (mixture of) linear combination(s) of eigenstates of a
all with the same eigenvalue a,. In these states the eigenvalue of
f(a) is f(a,) and Dev(k;f(a)) == 0. We write the operator, which re-
presents f(a) as f(a). If (2.10) shall be valid in a state k, in which
(2.02) 1s zero, we must have

Tr(kf(a)) = f{(Tr(ka)) = f(a,) = Tr(k (a)); Dev(k; f(a)) =0. (2.11)

The second part is a special case of the first. The first part requires
that the matrix elements of f(«) with respect to the eigenstates of a
with the same eigenvalue 4, have to be the same as those of f(a)
(ie. equal to f(a,)), the second part that the matrix elements of f(a)
with respect to the eigenstates of a with different eigenvalues a,
are zero like those of f(a). This means f(z) = f(a) so that I has to
be satisfied. For every a, for which I is accepted, (2.10) always holds
in states in which a has zero deviation. For those a, for which 1 is
rejected, (2.10) breaks down even in such states. In the latter
case it should be kept in mind that if we speak about a,, as the proper
value of the observable a in such a state, this is actually more or
less misleading.

Thus we could give a meaning to the deviation, as soon as we could
give a meaning to problem o, (or the special case az). This meaning
would only agree with the one which is usually prematurely ac-
cepted, as long as rule [ would hold. From the quantummechanical
point of view O, there is no need for such a meaning. Meanwhile
from the formal point of view the definiteness of the expression (2.02)
remains of interest. :

2.02 The measuring devicel). The aim of an (ideal) measuring
process is to infer (the most complete) data of the object system from
the data of the observational perception. Object system and ob-
server interact by intervention of a chain of systems, which form
the measuring instrument. This chain can be cut into two parts.
The first part (which may be empty) can be added to the object
system, the last part to the observer. Extended object system and
extended observer interact directly. The (extended) object system
is regarded as a physical system. It is described by a physical treat-
ment. The (extended) observer is unsusceptible of a physical treat-
ment. Its part consists in an act, which must be stated without
further analysis. The result of the measuring process should be in-
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dependent of the place of the cut in the measuring system, provided
the first part is entirely accessible to a physical treatment.

We make a simplified model of the extended object system in
which all partaking systems have one degree of freedom. The original
object system is denoted by 1, the successive systems of the measur-
ing instrument before the cut by 2,3,....n. Every pair of adjacent
systems/— land ! (! = 2,3,....n) is coupled during a time interval
(t3—4 ty—3). The time intervals must be ordered so, that

b+ = tor—t- (2.12)

For the sake of simplicity we impose the condition that different time
intervals do not overlap
by >ty (2.13)

Then the couplings between the various pairs of adjacent systems
can successively be treated separately.

In 1 we choose a complete system of orthonormal wave functions
®1, (£). The time dependence can be described with the help of a
Hermitian operator H}(f) according to

h ’
— 2 2ot = HIel, 0. (219

1 is coupled with 2 during the time interval (fo,#). This means that
during this time interval the Hamiltonian H,(¢) of the com-
bined systems 1 and 2 cannot be split up into the sum of two
Hamiltonians H(f) and H,() of the separate systems. The
system 2 1s supposed to be initially in the pure quantum state gy (f,).
We impose two conditions on Hy,(t) and ¢,4(¢). The first condition
is that Hy,(f) — HJ(f) must be diagonal with respect to the system
of ¢1,(t)
(Hiz(t) — HY()91,() = 21u(0)G pald).- (2.15)
G,z 1s an operator with respect to the variables of 2 (g-number), but
an ordinary number with respect to the variables of 1 (c-number).
When 1 is initially in the pure quantum state ¢1u(fo), the final
state of | and 2 together is because of the wave equation

h 0
7‘8‘5@12@) = — Hy,(t) 912(f) (2.16)
given by
. tl o 'l
—+[dtH, , - fac
e htof P1ulfo)P20lto) = @r1u(t) e ht.,ft k2 P20{lo)- (2.17)
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With arbitrary chosen functions g,(f) and

3
— £ Lavgue)
P1a(t) = o1,(t)e AL

. ¢
— 5/ a g+ Gpae)
¢ou(t) = ¢ h{ Har Gt p2llo) (b <t<?), (2.18)
(2.17) becomes
G1{t) p2ulhy). (2.19)

The second condition, which we impose on Hj,(f) and ¢q(¢) is that
the (already normalized) ¢,,(¢,) must be orthogonal

. 4
—+ / dt (—gul) +G2)
Phult) e (t) = oholto) eh{ wETRE,

t
o T“f HoBOROIN ) s (2.20)
The system of @, (#) need not be complete.

For ¢ > {;, after the coupling has been dissolved, 1 and 2 have
separate Hamiltonian operators H,(f) and H,(¢). The ortho-
normal functions ¢y, (¢;) and ¢,,(f;) then transform into the ortho-
normal functions

t
i
- [ar By

Pt =e *j e1.{t1)
and g (2.21)
ot
—— [ar Hy(#)
Poult) =€ h{ P2u(t1)-
The complete wave function (2.19) transforms into
P1u(B)pault) (& > 1) (2.22)

The succeeding pairs of adjacent systems are coupled analogously.
The complete wave function of the first m systems after the last
coupling becomes, in the same way as (2.22),

(Pl,u.(t)@2p(t) o 'q)my(t) (t2m—3 <t < fzm—z)- (223)

More general 1 can, instead of being in a pure state ¢,(f), be
initially in a state with statistical operator k;(%), which then can
be expanded according to

kl(tO) =“§ Klvp(tO)kl;w(tO) with le[.l.(tO) = Tr(klvp.(tO)kl(tO))’ (224)
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The statistical operator of the first m systems after the last interac-
tion then becomes with (2.23)

k12...m(t) = X xlvp(to)klpv(t)ki’;w(t) . ’kmw(t) (t2#t-3 << t2m—2)' (2'25)
Wy

The interactions have affected the states of the partaking systems
and established a correlation between them (entanglement).

2.03 Infringed states. When after the interaction the correlation
between the state of an arbitrary system /(1 </ < m) and the state
of the other m — 1 of the first m systems is ignored, the latter state
can irrespective of the former state according to (2.25) and (1.11) be
described by the statistical operator

Ko=) g+ 1.m(t) = Ty Kip(f)
= Exlw(‘o)kmy(t)~ KoK npu®) - Kagf)  (2.26)

(T'r, denotes the trace with respect to the variables of I). More ge-
neral the state of a selected series /), lp,. .. L (I <L << ... [, <m)
out of the chain of the first m systems irrespective of the state of the
other systems is described by the statistical operator

kl, l,...lk(t) = E:’ Kluy(t0>kl,up(t)kl,pu(t> .. -klkp.,u.(t) (t = t21k7*-3)- (227)

(2.27) is the statistical operator of a mixture of pure quantum states
O o, () - - P, (f) with weights xy,, (f). The ignorance of the
correlation with other systems has also partially destroyed the cor-
relation between the selected systems themselves. According to the
remaining correlation only individual pure quantum states ¢,(t)
of the systems /y, /5,. . ., with the same Greek index occur together.
We denote a state of a group of systems, which has come about
by interaction with other, afterwards ignored, systems as an infring-
ed state. ((2.25) is the entangled state (2.27) the infringed state).
We consider two particular cases of infringed states. First we put

m = n and let the selected series consist of the systems 1 and 7 only.
(2.27) then becomes

k() = ’Z‘Ixxw(to)klw(t)k,,w(t) (t > thu—3) (2.28)

The correlation between 1 and #, which is left in this infringed state,
justifies the inference that when for # the pure quantum state
@nu(?) is realized, the corresponding pure quantum state ¢,,(¢) (with
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the same p) is realized for 1. With this inference the correlation is
completely exhausted.

In the second place we put m = »n 4 1 (supposing that the inter-
action between n and »n -- 1, which crosses the cut, is still accessible
to a physical treatment) and select the systems 1,2,... .#. Then (2.27)
gives

k12...n(t) == i: y‘ly/.l.(tO)kl;Lp(t)k2pp(t) . .k,,y_p(t) (t -1 tz,,_]). (229)

(2.29) determines the infringed state in which the extended object
system is left after the interaction with the observer; if the state of
the observer is afterwards ignored.

If in (2.29) we put n = 1, we get

k() = %Xw(to)kw(t) t =4), (2.30)

which determines the infringed state of the original object system af-
ter the interaction with the measuring instrument, irrespective of
the final state of the latter (and of the observer).

2.04 T he measurement conclusion. When the original object system
and observer are connected by a measuring instrument, which con-
sists of an unramified chain of one or more interacting systems, it
follows from (2.28) that the conclusion about the original object
system, which the observer can infer from his final perception,
certainly cannot go further than to indicate which of the pure
quantum states ¢,,(¢) is realized. According to the quantum notion
of observation O, the observer can in principle actually infer that
conclusion under ideal conditions and he cannot infer more under
any condition. This rule establishes the connection between the
mathematical formalism and the observers perceptions. The rule
does not follow from the formalism. The formalism is in harmony
with the rule. The rule justifies the representation of the formalism
in terms of pure quantum states.

The conclusion derived from the measurement thus consists in
indicating which pure quantum state of the mixture (2.29) or (2.30)
of the extended or original object system is realized after this
measurement. It could indicate equally well the realized pure quan-
tum state of an arbitrary system or group of systems of the measur-
ing instrument. For a great number of measurements on identical
object systems with identical initial operators the statistical pro-
bability of realization of a pure quantum state with index p is
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according to the statistical interpretation of (2.29) or (2.30) %y,,(%)
(cf. O,). The measuring result is independent of the place of the cut
in the measuring instrument 1).

Formally we can distinguish the following stages in the measuring
act. First the object system is coupled with the measuring instru-
ment, which gives the entangled state, then the systems of the
measuring chain are ignored, which gives the infringed mixture,
from which finally the realized state is selected. They are represented
by the scheme:

initial state k() = T Ky(0)
v

coupling ¥
entangled state 2 %, K14 () Koy (B) -
ignoration N Hov
infringed state Zp K, ()
selection d B
measured state k(0

2.05 The measuring of observables. For every system / we can define
a Hermitian operator a(f) for which the functions ¢,,(¢) form a
system of orthonormal eigenfunctions with arbitrary prescribed
eigenvalues 4,,(¢). a,(¢) commutes with HP(?)

[H5(2), a(f)] = 0. (2.31)

The condition (2.15) is then equivalent to the condition that Hy,(#)
must commute with a,(¢), or in general

[Hig1 (@), a,lt)] = 0. (2.32)

In the pure quantum state ¢,,(f) the observable a,(f) has the value
ay(?). A measurement, which decides which of the states ¢, (¢) of /
is realized, also determines the value of a,(#). It can be regarded as
a measurement of the observable a;(#). This establishes the experi-
mental meaning of the value of an observable. Meanwhile, re-
membering 2.01, one should be careful in regarding a,,(f) as the
proper value of a;(¢).

If all eigenvalues of a;(¢) are different

ay,(t) # a,(t) foru # v, (2.33)

the value of a;(¢f) on the other hand uniquely determines the pure
quantum state of the system /. Therefore, instead of indicating
which state ¢, (¢) of [ is realized, the observer can in the ideal case
(2.33) equally well (and otherwise less well) record the value of
Physica X1I 28
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a,(t). Usually the measuring results are thus stated in terms of
values of observables and not in terms of states. For this purpose it
is immaterial whether these values (defined as eigenvalues) have a
proper meaning in the sense of 2.01 or not.

2.06 Correlated observables. Similarly a correlation between the
states of various systems can also be expressed as a correlation be-
tween the values of observables of these systems. As a particular
case we consider the effect of ignoring the correlation with some
systems (infringement) on the correlation between the remaining
systems. This effect has in 2.03 been found to consist in the dis-
appearance of the non-diagonal statistical operators ky,,(¢) (u # v)
of the latter systems. This has no influence upon the expectation
values of those observables, for which the operators are diagonal
with respect to the functions ¢,(¢). That means that the correlation
between such observables, for which the operators commute with
the a,(¢), remains unaffected. For other observables the non-diagonal
elements are dropped and the correlation is more or less destroyed.
For observables, for which the operator has no non-zero diagonal
clements with respect to the ,,(¢), no elements remain and the cor-
relation is entirely destroyed.

2.07 The pointer reading. When for some system in the chain, say/,
the functions ¢y, (¢) read in g-representation

(Ply.(t) = 8(% - qlp.)' (234)

so that they are eigenfunctions of q;
qIC\Ol/J. = ‘Ilp.CPtp,» (235)

we denote the measurement as a (pointer) reading. ! is called the
scale system. The measuring result of a reading can be expressed by
the value of the coordinate of the scale system.

A simplified model, which gives such a coupling between the
systems (/ — 1) and /, that the values of the observables a;_(f)
are measured by the values of the coordinate q;, is obtained )
witha Hamiltonian operator of the type

Hy_y(t) = h(ag—y(8) + Fag—y (@) p:. (2.36)
The condition (2.32) is satisfied. With the choice
gu(t) = Mag—n,(t)) (2.37)
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(2.18) gives

. h
— [ dt fag—), )
alt) = ¢ T AR (2.38)

We suppose that the wave function of the initial state of / reads in
grTrepresentation

ew(g:; to) = (g — quo), (2.39)
so that q; has the initial value g,
Aipio(fo) = GuPiollo)- (2.40)

(2.38) then gives
t
Pty = 3@ —qo— F(ag—y,)) s Flag—y,) =tfdf Hag—n,(8). (2.41)
If we put

Gy = @, — F(“a—l)ﬂ)y (2.42)
(2.41) becomes

eplty) = 3@ — 1) (2.43)
These wave functions are eigenfunctions of q; with eigenvalues ¢,,

QP(t) = GuuPra(ty)- (2.44)
The orthogonality condition (2.20) requires

qlp. '_)’é qlv fOl' % # v, (245)

which is at the same time equivalent to the condition (2.33). (2.45)
is satisfied if

Flag—y,) # F(ag—y,) for p #v. (2.46)
The spectrum of the values g, (2.42) need not necessarily cover the
whole domain of values of q, from — oo until 4 co.

The momentum operator p, reads in g,-representation

p= —?— Biq; . (2.47)
The matrix elements with respect to the functions (2.43) are
Tr(piki,) =2 =~ 8(g, — g,.). 249
T

The diagonal elements (u == v) are zero. Therefore the correlation
of the momentum p, of the scale system with observables of other
systems is entirely destroyed by the measurement of the canonical
conjugate coordinate q;.
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2.08 Observational connections. For a relation between observa-
tional data we need at least two measurements. We consider two
succeeding measurements during the time intervals (%,%) and (#5,%)
with

ty >t (2.49)
performed on the same system 1. The first measurement measures
the states ¢,,(f) or a corresponding observable a,(¢), the second one
measures the states ¢,(f) or a corresponding observable aj(f).

If the first measuring result indicates the final pure quantum state
e1.(t) (8 <t <tp), the statistical operator at the beginning # of
the second measurement is k,,,(¢), which is expanded according to

klpty.(t(,)) :#;:‘,'x{p.p.v'p’(t;)) ’lp,'v’(té)
with ' (2.50)
x;yp.,v’y.’(tc’)) = Tr(klv'p'(t(,))klpu(t(l))'
The statistical probability, that, after the first measuring result has

indicated the pure quantum state ¢,() (f; <? <{), the second
measuring result will indicate the pure quantum state ¢{,(¢) (¢ >¢) is

x;pp,v’v’(t(;) = T?’( ;v’v’(t(l)) kmp(tc'))) = | CP;I'(L‘(’)) (Ply.(t(,)) |2' (251)
This conditional probability is actually the most elementary ex-
pression contained in the formalism, which denotes an observable
connection and which has a directly observable statistical meaning.

When the functions ¢{,(f) coincide with the ¢(Z,), i.e. when aj(¢)
and a,(¢) commute, (2.51) becomes

X;y,p.,v'v’(té)) = Sv’p (252)
and the second measuring result can be predicted with certainty
from the first. In this case we have essentially the repetition of a

measurement. (2.52) expresses the reproducibility of the measuring
result.

2.09 Intermingled states. The entangled state of two object systems
1 and 2 after a coupling of the type described above is of the kind

k]2 = X va’ kll“" k2p.V' (2.53)
v

The probability of finding system 1 in a state k; and 2 in a state Kk, is
T?’(kxzklk2> =2 Lup Tr(klp.vkl) T?’(kzw,kz). (254)
By

When k; and k; coincide with the projection operators k;,,, and ka,,,
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(2.54) becomes equal to x5, This might (wrongly) suggest that
(after the coupling and before the measurement) the state of 1 and 2

is the mixture
2= E "wklun k2uu (2.55)

instead of the state (2.53). In this way the correlation between | and
2 would be partially destroyed by the omission of the non-diagonal
terms. In the mixture (2.55) the expectation value of the states k;
and k, would be

Tr(kik k) = EJ %up 17Ky Ky) Tr(ky,, ko) (2.56)

instead of (2.54). It has been emphasized by Furr y3) (in a some-
what different form and particularly against our common opponents,
cf. 2.11) that only if neither k, nor k; coincides with any of the k,,,
or k,,, respectively, (2.56) can be different from (2.54). Because the
latter case hardly occurs in the relevant applications, one is apt
to make the mistake of replacing (2.53) by (2.55) (and to draw un-
justified conclusions whenever this case does occur).

If 1 and 2 had been coupled with one or more further systems
3,.... according to

k12:3.... =X Xyu klp,v k2p.v k3,u.v' v (257)
7R

and these further systems had been ignored afterwards, the in-
fringed state of 1 and 2 would correctly be given by (2.55) indeed.
This infringed state is quite distinct from the entangled state (2.53).
2.10 Multilateral correlation. In (2.53) the transition operators
k., and k;,, belong to two systems of orthonormal wave functions
¢1,and ¢, which span the (generalized) Hilbert subspaces R, and
R,. An interesting case 4) is that for which k;, can similar to (2.53)
also be expanded with respect to the transition operators1y,, and 1,,,
belonging to any two systems of wave functions ¢, and ¢, in
Ry and R,, when one system is chosen arbitrarily variable but
orthonormal and complete, the other system suitably to the first
Z vy Ky Koy = Z hgp Lipe Lapo (2.58)
By p.C
A necessary and sufficient condition 4) for the occurrence of this case
is that the x,, are of the form

Uy = %y Ry | % | = % (2.59)
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The factorization of x,, means that k;, is a pure quantum state of
the combined systems | and 2 with wave function

P12 = E Xy Pru Pau- (2.60)

The unimodular coefficients x,/x could even be included in ¢y, or
Pap-

The special case under discussion can easily be generalized to the
following case. The functions ¢;, and ¢,, are taken together in
grOuUpS @1y, Piyy - - - - a0d @, Pgy,, - -« -, Which span the (generaliz-
ed) Hilbert subspaces Ry,Ry3,. . .. and Ry,Ryp, . . . . respectively
(R1=R11 +R12+ .... and R2=R21 +R22+ ....). In these
subspaces we take any two sets of systems ¢y, ¢i,,.... and
$2ps Y2pp0 - + - -» Of Which one set is chosen arbitrarily variable but
orthonormal and complete, the other suitably to the first. It is
easily seen that the last part of condition (2.59) then has to be re-
placed by | %, | = %,. In 1-dimensional subspaces Ry, and R all
l-representations are essentially the same.

An equivalent formulation of the generalized case is obtained by
taking instead of any two systems of wave functions ¢y, and ¢,
as in the special case, two definite systems of which one is chosen
arbitrarily fixed but orthonormal and complete, the other suitably
to the first. Ry(,Ry3,. ... or Ry;,Ry;, . ... are then determined by the
sharpest division of R; or R, into subspaces, which span linearly
independent groups of ¢, and ¢y, or ¢, and ¢,, at the same time.

We restrict ourselves to the special case. First we show the ne-
cessity of (2.59). With (1.13) it follows from (2.58) that

o Tri(Kipy Ligp) = AopT7a(Kay, 1opo),
%u T 72(Kapy Lp0) = NopT71(Kiyp 1ipo) -

It follows directly that
Ky Ay Tr,(k,#,, llcp) = hop Moo I, (klp.v llap) (l=12), (2.62)

(2.61)

so that (with x,, = x}, Ng = 2E)
| % [2 = | Rpg [P0 T7; (Kyy ligp) = 0 (I = 1 and 2).  (2.63)

Because one of the systems l;,, or 15, is arbitrarily variable and
complete in R; or R, the latter alternative is excluded and we must

have
|2 | = [ Mpo | =% =N (x =2> Q). (2.64)
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With (1.13) it further follows from (2.58) that

“zvxvy.Trl (klp.v llap) k2y.v = )‘ap 12pcu

(2.65)
ExvuT72(k2y.v I2ap) kl,u.v = )‘ap llpo'

These relations connect the arbitrarily and the suitably chosen
systems and establish the orthonormality and completeness of the
latter. With (1.08) we derive from (2.65)

1
= R TT] (klp.vllop) TT] (k],,#r llp’o')k2p+t' (266)

bpolagy=
P g 7‘ap7‘P o B

and

1
l2pp’ 800”— ')_\;; }L§y- Hyp Trl (klp.vllap) Trl(klvp, llp 0’)k2p.p. (267)

and similarly for interchanged indices 1 and 2. (2.66) and (2.67) must
be identical according to (1.08). Because one of the systems 1,,, or
1,,, is arbitrarily variable and complete in R; or R,, we must have
(remembering (2.64))

Ry Y = K2 %y Ay 07\@——7\2 Ay (6 = A >0). (2.68)
Then x%,, and A,, must have the form
Ry = W Ry | %y | = =Nehp [N | =W (2.69)

This shows the necessity of (2.59).
The sufficiency can be shown in the following way. Choose, say
in Ry, a complete system of orthonormal wave functions ¢y, and

choose for each p a constant A, with | X, | = A = ». Then take the
functions
1

LI‘)2p = Tp_ Z‘Ly'y. (dﬂp (Plp.) Pap, (270)

which are orthonormal and complete in R,. From (2.70) it follows that
]
('plp = )\p z— (“P;p C{)2;1.) Pip- (2.71)
[

The indices 1 and 2 could equally well have been interchanged. For
the transition operators we get

1
12pc = P ) Ay Trl(kluvllap) k2y.v:

B | (2.72)
llpa = 7‘ap #Zv Yo T"Z(k2,uv 12ap) kl;w
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xvp,Trl (kl uv llcp) = )‘UPT72 (k2vy l2pa) . (2'73)
Therefore

)2 Ty kl;,w k2;:.v == 2 Yo T’gi (k!;w Ilvp) llpo k2;w
wy 13 po0 (2.74)

=X )\ap Tr2(k2v,u 120-;:) Ilpo' k2yv =X }\crg llpo 12pa'
Bvip o P

This shows the sufficiency of (2.59).

It is of importance for the discussion of the measuring process,
that (contrary to the expectation of R uar k%)) multilateral cor-
relation between more than two systems is impossible. We first
show this impossibility for the case of 3 systems.

Suppose we would have the expansions

ki = Ei ou kl;w kZp.v kSy.v = Ey }\op I po 12pa' 13;)0* (2.75)
With (1.13) it follows from (2.75) that
1, 71 (K Ligp) T72(Kapy Lag,) = 26,773 (Kayy lago) (9l
o, T73(Kap Yagp) = MapT71(Kiyy Lipo) T72(Kay 1po) (cyel).
In the same way as before it follows that

I x;w 12 = I )‘po }2 or Tri(kziwlxgp) =0 (l - 1, 2 and 3) (27?)

(2.76)

Because one of the systems 1;,, must be arbitrarily variable and
complete in R;, we must have

|y | = [Rpo | = 22 =22 (x =21 >0). (2.78)
It further follows from (2.76) that

T?’;;(k v13a )T?’;;(kgv 13 a) =1
or Sl e (2.79)
7‘7! (kl;w llcp) T?’2{k2vy. lZpa) =0 {C})Cl)

Then we must have
Tyl(kl_uvllop) == Trz(kz;w 120;0) == T”S(k;’a;.w 130p) = lorQ. (280)

This would mean that the systems of 1, 1o,; and 15, should (but
for a simultaneous change of enumeration of the Greek indices of
the three corresponding operators and but for unimodular constants)
be identical with those of ky,,, Ky, and kg,,. This is against the
assumption. Multilateral correlation between the statesof 1, 2and 3
is therefore impossible.
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For more systems 1, 2, 3,.... the impossibility of multilateral
correlation can easier be shown in the following way. Suppose we
would have the expansions

k123....= z X,,“ kll‘-" k2;w k3p.v’ e ::PZ )\UP 11p<712pal3p0' vee (2.81)
By ,0

Then
T7’34.... k123.... =2 xy.y. klp.y, k2p,;l. = ;2‘ )\ppllpp 12pp' (282)
I3

Similar to (2.61) and (2.62) we get

% T (K i) = g Tra(Kay, o),

(2.83)
% T 72Ky lop) = MppTr1(Kyyy 1ig,)
and
xi“Tr,(k;“F Ilpp) = Kf,pTr;(k;M,_ IIPP) (l = 1,2), (284)
so that

X““ = :1: )\PP or Trl(klpy.llpp) == O (l = | and 2)- (2.85)

Because one of the systems 1,,, 1s arbitrarily variable the latter alter-
native is excluded and because the traces in (2.83) are non-negative
we must have

Ky = A, (2.86)

P PP
Further we have similar to (2.65)

ZTr (K bipp)Kopyu = 1o,
I

(2.87)
E Tra(Kopp Lapp) Kipp = Lipp,

from which we derive

lwl}w = Z T71(kIWLPP)Trl(lellW) Ko (2.88)
I3
and
L 3y = L Trl(klwl]pp) SPkamL (2.89)
“

and similarly for interchanged indices 1 and 2. Because (2.88) and
(2.89) have to be identical according to (1.08) we must have

Trl(kll.l,/.l.]lpp)Trl(kl/.Llu.llacr) == Trl(klyy.llpp)spcr' (290)
This would require
Tri(Rypplipp) = 850 (2.91)

for every u, p and o, which is impossible. Multilateral correlation
cannot extend over more than two systems.
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The proofs given for the special case of multilaterial correlation
in the entire spaces R,, R,,. ... can easily be generalized to the ge-
neral case of multilateral correlation in the subspaces Ry, Ry, - .
Ry3,Ryp,....;.... only.

Now we see that also in the measuring process multilateral cor-
relation (in the special or in the generalized sense) cannot be trans-
mitted through the chain of systems of the measuring instrument.
The correlation (2.28) is uniquely determined. This excludes the
possibility of surpassing in the measurement conclusion the maximum
inference discussed in 2.04 by the application of multilateral cor-
relation.

2.11 Eitnstein’s paradox. We return to the two object systems 1
and 2 in the multilateral correlated state (2.58).

If the state of one of the systems, say 2, is entirely ignored, the
infringed state of 1 becomes

2T Ky, = BT, (2.92)
© P

o

The sums (which are identical) denote the projection operator of the
(generalized) Hilbert subspace R;. In the mixture (2.92) all states
in R; have the same probability »? = 2. If R, coincides with the
entire (generalized) Hilbert space of wave functions of 1, the in-
fringed state (2.92) becomes entirely undetermined.

If in dealing with the entangled state (2.58) one would make the
mistake pointed out by Furry (cf. 2.09), one would get

Kz Z klp,‘u k2y.y, = )\2 2 llpp lzpp. (293)
® P

In dealing with (2.82) we have seen that (2.93) cannot hold. (2.85)
does not express a correlation between pure quantum states of 1
and pure quantum states of 2 (in the way a member of (2.93) would
do).

1f, however, (after the interaction between 1 and 2, which esta-
blishes the state (2.58)) one of the systems, say 2, interacts with a
measuring instrument, which measures the states lzpp, the infringed
state of 1 and 2 together after the latter interaction is

73 P Y (2.94)
p
This mixture is different for different types of measurements, i.e.

for different systems l,,,. (2.94) does express a correlation between
peur states of 1 and pure states of 2. This correlation is of unilateral
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type. When the measuring result selects for 2 the state 1,,, the
state of 1is 1y,,.

“After the interaction between 1 and 2 has taken place, an ob-
servable by of 1 with eigenstates 1,,, can be measured in two dif-
ferent ways: either by a direct measurement on 1, or by measuring
an observable b, of 2 with eigenstates 1,,, (corresponding to 1;,,)
by a direct measurement on 2 (then 2 can be conceived as a part of
the measuring chain). At a first glance it might seem surprising and
perhaps even paradoxical that it is still possible to decide which
observable of 1 will be measured by a measurement on 2 after all in-
teraction with 1 has been abolished ) and that it is possible to mea-
sure independently two incommensurable observables a; and
bi([a;,b;] # 0) by applying the two measuring methods side by
side 7) 4). (Of course one should care for not making the mistake of
(2.93), which would naturally lead to paradoxical results).

When the eigenstates of a; are k;,, and those of by are L, a
measurement of a; selects a state out of the left member, a measure-
ment of b; selects a state out of the right member of the expression
(2.92) for the infringed state of 1. The probability that one measure-
ment selects the state k,,,, if the other selects the state 1, (or
opposite) is according to (2.51)

Tr(klp.pl lpp) ’ (29561)

no matter whether a; and b, are both (successively) measured directly
on 1 or (no matter whether successively or simultaneously) one of
them on 1 and the other one on 2. When both are directly measured
on 1, the state in which 1 is left after the succeeding measurements
is ky,, 1f the final measurement was that of a,, it is 1;,, if the final
measurement was that of b;. A paradoxical situation seems to arise
if one asks in which state 1 is left after a; has been measured on |
and b; on 2 (or opposite). We have to remember (cf. 2.08) that all
observational statements bear on connections between measure-
ments. The state in which 1 is left has only an observational meaning
with regard to a succeeding measurement of an observable of {, say
c; with eigenstates m;_.. When the measurement of a; has selected
the state k;,,, the probability that the measurement of ¢; will
select the state m;,  is

Tr(Ky,, M), (2.956)
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When the measurement of by has selected the state 1;,,, the pro-
bability that the measurement of ¢; will select the state my,, is

Tf(llppml.”.). (2950)

Thus we get two different probabilities for the same event. This is
not unfamiliar in statistics, because the probabilities are (always)
conditional. They have only a meaning for a great number of com-
bined measurements of a;, b; and ¢;. The probability of finding a
state Ky, is %, the probability of finding a state 1;,, is 2%, the pro-
bability of finding a state m,, is then according to (2.95b) or (2.95¢)

X2 A T?’(k“‘m ml.,,.) or )\2 = Tr(llpp m,,.,.). (296)
" P

Only these sums have to be identical and they are so according to
(2.92). The correlations between the measuring results for a;, b; and
¢, are described by (2.95).

Let us consider once more the measurement of a; and of by, one
of them directly on 1 and the other directly on 2. The latter measure-
ment can also be conceived as a direct measurement on 1 (the system
21s then regarded as a part of the measuring chain), which preceedes
the first mentioned measurement. The only pecularity of the present
case is that after the coupling between the object system 1 and the
first system 2 of the measuring chain of the earliest measurement has
been abolished (and even after the succeeding measurement has
been performed) one can thanks to the multilateral correlation be-
tween | and 2 still decide which observable will be measured by this
earliest measurement. But when we pay due regard to the correl-
ations between the various measuring results, this leads to no para-
dox.

An illustrative example, which has been discussed by Ein-
stein a.0.?)4) and by Bohr a.o.?) 3)5), is that of two particles
(each with one linear degree of freedom) in an entangled state for
which the wave function reads in g-representation

S qitgs

b= — g+ QT 297)
This state can be realized by two particles 1 and 2 directly after
passing through two parallel slits at a distance Q in a diaphragm.
(2.97) describes the motion in the direction perpendicular to the
slits, parallel to the diaphragm. The total momentum P can be
determined from the total momentum directly before the passage
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through the diaphragm and the change of momentum of the dia-
phragm. The slits can be taken so far apart, that exchange effects
can be neglected.

(2.97) is of the form (2.60) with (2.59), as can be seen by expanding
(2.97) with respect to e.g. coordinate or momentum eigenfunctions
of I and 2

=it Yol

1 S0 g (n+ =) L ——n+£)
—__ P ) PR 2/, i
h\/h.[dne e e (2.98)

R/ coincides with the entire (generalized) Hilbert space of wave
functions of 1. The infringed state of 1 is entirely undertermined.
After a measuring result g, = ¢,, or p, = p,, 1 is “left” in the state

1 i 41 (P—b:p)
8(q1 ——— Q2;4 + Q) or We P (299)

and ¢y = gz, — Q or p; = p — p,, respectively. In this way the
coordinate or momentum of | is measured by the coordinate or
momentum of 2 after the interaction between 1 and 2. We come
back to this example in 5.06.

3. Operator relations.

3.01 Exponentials. In the ring of operators a generated by two
non-commuting Hermitian basic operators p and q, for which

. )
[p.q] = l,ie.pq—aqp =~ (> 0), (3.01)

we are going to derive a Fourier expansion similar to that in a

commutative ring of functions a(p,q) of two real basic variables

P and ¢. For this purpose we need some exponential relations. It

should be remembered that we still have a rather specialized case,

because the commutator (3.01) of p and q commutes with p and q.
With (3.01) one has 2)

% (p+a)

1mu+~—m+m-q$m+%—><+~—w

'\ (n—1)n
if_)—r _
n*h

p

1 ” 1 'l ”
:nli)n;o(wr;i—ﬁp) (1+—+aq) (1—

=€

|-
~
»|e
-1
™
|
S|
>
—
w
(@}
N
SNo—
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With (xp + yq) and (x'p + »'q) instead of p and q we get for (3.01)

((xp + yq), (*'P + y'q)] = 2y’ — 3% (3.03)
and for (3.02)

i , . i S wpty 2 ey
o (EFDIPEO+y1a) g 6Py 5 Rtya) o5 Gy—ye) (3.04)
(Important special cases are y = x" = 0 or x =y’ = 0). Further

i § L i :
P g g WPEID Sy Eptna) o# WPV g ) (3.05)

Analogous to the (symbolical) relation
A [[dg ag 5 o+ +7 — sz ), (3.06)
(3.05) gives the operator relation
—%;/_/di dn e‘“%(flﬂ-nq) e% (=p+y9) e—;— ¢o+qa) __ 5(x) 3(y). (3.07)
Further analogous to
[ axay ap agaip, gy T I R _ g0 (308

we have
.};15-/‘/:/ dx dy d¥, dy e %(§P+"l'-1) ae ‘% (rp+yq) e® (¢p+7q) e (*p+yq)
= %/f/ dxdydédne * €p+n o 7 ¢p+70 o7 b

= / / dE dn e 7 EPHD g 3 @41 55y 50) = a, (3.09)

In the same way as (3.08) and (3.06) show that every (normalizable)
function a(p,q) can be expanded intoa Fourier integral

a(p.q) = f f dx dy a(x,y) €
with ' (3.10)
! i
a (xy) = ﬁffdﬁ dg alp.g) e * 0,

(3.09) and (3.07) show that every operator a (with adjoint a') can be
expanded into

a =/fdx dy a(x,y) e® P
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with «(x,y) = 7% f f dE dny e~ W UPHID g TR R 5 GRknd) g g

This is already the Fourier expansion, but the coefficients «(x,y)
can still be expressed in a more simple form.
3.02 The trace. When U is a unitary operator

UtU =1, (3.12)
the unitary transformation
a’ = UtaU; ¢’ = Uy, ¢t = ¢!U! (3.13)

leaves all operator relations invariant. Therefore the latter can be
derived in a suitably chosen representation.

The eigenvalues ¢q of q and  of p are assumed to run continuously
between — oo and 4 oo. In g-representation the operators q and p
can be taken in the form

n 0 no3
= qt = =pl == = —_——
q=4q .P=Dp 7 5 or T (3.14)

(8/8¢ is meant to operate to the left). With (3.04) we can write

i i i i 9 i x
VPPN WP AN I = gz W r 7 W . (3.15)
Expressing occasionally the inner product explicitely by an integral,
we get with (1.09), (3.15) and (1.05)

FTr A =23 [dg gl FH AN E F g

= —}lz-%/dq @L(g—%)e-}yq@“(g + %) = 3(x) 8(y). (3.16)

The result is independent of the chosen representation. Comparing
(3.16) with (3.07) and remembering the linear expansion (3.11) of a,

we see that 7ra can invariantly be represented by the operator
relation

712 Tra = —h%/fda dne FEPTID g a3 17)

3.03 Fourier expansion. Rewriting (3.07), (3.09) and (3.11)
with the help of (3.17) we get

% Tr e™ PP — §(x) 3(y), (3.18)
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% fdx dy Tr (a e ¥ (zp+’q)> g® P g (3.19)

and

a =// dx dy afx,y) e PO
with (3.20)

ses) = L1ofa mhmr)

(3.18), (3.19) and (3.20) are entirely analogous to (1.13), (1.14) and
(1.15). (3.18) and (3.19) respectively express the orthonormality and
the completeness of the systems of operators
L e
vh
(1.15) and (3.20) are the two ways we use for the expansions of
operators.

(with variable x and 4).

4. Correspondence.

40l von Neumann's rules. We now examine the rules of
correspondence I, IT, IIT, IV and V’. First I and II.

We show that if between the elements a of one ring and the ele-
ments a of another ring there is a one-to-one correspondence
a «<— a, which satisfies von Neumann’s rules (cf. 1.10)

if @ < a, then f(a) «<— f(a), I
ifa <> aand b «<— b, thena - b «<— a 4+ b, 11

the two rings are isomorphous.
We get using I and II

(@ + b2 —a? —b?> = ab + ba < ab + ba (4.01)
and also using (4.01)
a(ab + ba) + (ab + ba)a — a?b — ba? = 2aba < 2aba (4.02)
and further 'using (4.02)
(ab + ba)? — b(2aba) — (2aba)b =
= — (ab — ba)* <> — (ab — ba)2. (4.03)
Therefore we have
ab — ba < 4 (ab — ba), (4.04)
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and with (4.01)
ab <— ab (for all a and b) or ab <— ba (for all a and b). (4.05)

This means that the rings are isomorphous.

It follows that, if one ring is commutative and the other not, I and
11 are inconsistent ®). (When the commutators are of the order of %,
the discrepancy is according to (4.03) of the order of 72).

4.02 Bracket expressions. Then V'. For the correspondence a <— a
between the commutative ring with generating elements p and ¢
and the non-commutative ring with generating elements p and g

with commutator (3.01) (p <— p and ¢ <—> q) we show that the
rule (cf. 1.18)

ifa(p,g) <— aand b(p,q) < b, then (a(p,9), b(p,9)) < [a,b] V’

is self contradictory.
With

1)2 < Xl, q2 <> XZ; 1)3 <= Yh q3 < y2 (4.06)

we find from

} (0%9) = p <— 3 [x1.q] = D,

o (4.07)
5 (0%9)=0<—3[x,p] =0
(and similar relations for ¢ and x,) that
e e N . 2 (4.08)
and from
% 3) = 2 <> % ) - 2 + cy,
} (:b3 q) =1 P ?1 P+ (4.09)
3P =0 <= §[ypl =0

(and similar relations for ¢® and y,) that
p? <= p>+ 3eip +di, ¢ <~ & 4 3629 + d; (4.10)

(c1, €2; dy, d, are undetermined constants). Further we get

1 .%) =p*q <>+ [(p*+3cip +d1),(q2+62)]=%(p2q+qu)+clq’(4 1)
i :
2

PP <> (Pa*+4%p)+cop
and

L(p20Y) = p%¢* «— L (p® + 3eip + dy), (Q® + 3coq + dy)]

=} (P2q2 + quz) + 32+ aq® + cop? + i (4.12)
Physica XII 29
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With (4.11) we get

3 (%05 = $°¢* < +[(}(p*a + ap?) + cq), (} (Pa® + a°P) + czp)]
=} (P’ + ¢°p?) + $W° —ai@® —p? —tac (413

{4.12) and (4.13) can only be identical for ¢; = ¢, = 0 and % = 0.
Therefore V is self inconsistent (the deficiency is of the order of #2).
4.03 Weyl's correspondence. And finally ITI and IV with para-

meters ¢ and ¢ (i.e. for the same rings as in 4.02). We denote the
density function by p(p,q). The rules (cf. 1.13)

1 <> 1, 111
if a(p.g) < a and b(p,g) < b,

then [fdp dq e(p.q) alp.q) b(p.9) = Tr(ab) IV
can be satisfied by (1.55)

a(p.g) = Tr(m(p.g)a), a = Jfdp dgel(p.g) m(p.g) alp.g) (4.14)
with a transformation nucleus m(p,q), which satisfies (1.57), (1.58);
(1.59), (1.60)

Trm(p,g) = 1, (4.15)

J/dp dge(pg) mipg) =1; (4.16)

Tr(m(p,q) m(p'.g)) = 7' (p.g) 3p —p) 3lg —¢), (417)
J/ap dq e(p.q) Tr(m(p,g) a) Tr(m(p,g) b) =

= Tr{ab) (foreveryaandb), (4.18)

When we replace in (1.56) the complete orthonormal systems
EL(p.g) of (1.54) and k,, of (1.15) by the complete orthonormal
systems

L mwertn (310 and &7 9 of (3.20),

h
we find a solution . .
m(P,C]) - _L [fdx dy e'i"("p‘f’?(ﬂ e""ﬁ'("?‘*’)‘?) (419>
of (4.15), (4.16); (4.17), (4.18) with the density function

!
elpg) = 7 (4.20)
Then we get for (4.14)

* (pya)
a(p,g) = ——[fdxdy wren Tr( ® a),
(4.21)

1 L. ) )
o= b ffarir o by i

w‘o’
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With the Fourier expansions (3.10) and (3.20) this correspon-
dence reads

/ dx dy a(x,y) e T / / dx dy a(x,y) e* PP (4.22)

which is We yl's correspondence 2).

I1 is a consequence of IV and is therefore satisfied by the cor-
respondence (4.21). We will see what isleft of Iand V'. If a2 «— a
and b <— b according to (4.21) we find with (3.04)

ab=—£;f/....f/dxdydx’dy'd;bdqdf"dq"

i i _1_ , , ___l'_ e st
(% (EEDPHOEYIQ) o (') = R b HYT) pp ) b(p,9). (4.23)

With the variables

E.:=x+x,1 7)=y+y'; g = 2 :T=—T—J
(4.24)

’ x¥—x ’ — ' ’ ’ ’ ’
€=——2—, i =7 2y» ¢ =p—p, "=9—¢,

this becomes

ab = —f/ f dt dndt’ dv dedvds’ d7’ eh . (gp+na) ezn(—fn )

_—h—(§a+1)-r+§a+n7-)a(c + %G’,T——%T,) b(O"‘—‘%O'/,T + %—T,

— .ﬁ%/f/fdg dy do dr e_; ¢ép+19 e—% a+q7)

alc +in v — 18 blo—in, 7+ 18

= _}27/0[[15 dndodre® Ep7a) 5 ot

(ei(vz%—faa—f) a(o,w))(e—i (nga=t30) b(c,¢)>. (4.25)

The expressions in brackets at the end are a symbolical represent-
ation of Taylor expansion. With the substitution

E—>x,%->y,06—>P,7>¢q (4.26)

we get by partial integration

ab=% fdxdy »"‘"”“” fdpdq
7}

— % wp+y0) ”, 32
B (p q) e2 557 89 0P

b(;b,q)> . (4.27)
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This gives for the Hermitian operators { (ab + ba) and é— .
. (ab — ba) the correspondence

%
a(p,q) cos o) (-8%_8%_ Ss—q—a%> b(p,9) <— } (ab + ba), (4.28)

alp.g) sin 2 ('517 =% 55) blp.g) < ~ (ab—ba). (429

To the neglect of terms of order of %2 and higher (4.28) and (4.29)
would read

a(p.q) b(p.q) <— % (ab + ba), (4.30)
a($,9) % (% %_~ _és_q_ %) b(p.g) < ~ (ab —ba). (431)

(4.30) would lead to I, (4.31) is equivalent to V'.
We examine which functions f(a) satisfy I. From (4.28) we see
that the correspondence

if @ <— a, then a” <— a” (for every integer #) (4.32)

only holds if
I < 3 © 3 0

Eeog o |0 . R T SR 2V :
a" cos 0 5 817) a' = a"* (for all integers & and /). (4.33)

First take for a a homogeneous polynomial in p and g of degree ».
An elementary calculation shows that the condition

B3 e 8 @ ,

acos—2—<—~—8p E _“8;5) a=a (4.34)
or

5 20 8 8

is only satisfied if a is of the form (¥p + y¢)*. Then it follows that
any polynomial in p and ¢ can only satisfy (4.33) if it is a poly-
nomial in xp + yg. This finally means that I can only be satisfied
if a is a function of a certain linear combination xp + yg of $ and ¢-
With the helpof the Fourier expansion (4.22) it is easily seen that
every (normalizable) function of xp + yg does satisfy I. Therefore the
least restricted form of I, which is consistent with the correspondence
(4.21) 1s

fxp + vg) <= Hxp + yq). (4.36)
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Asto V', we see from (4.31) that for the correspondence (4.21) the
bracket expression ((a(p,q), b(p,9))) (cf. 1.14) defined by

if a(p,q) «<——a and b(p,g) «— Db, then ((a(p.q9), b(p,9))) «<—[a,b] (4.37)

Is given by

(.0 bp0) = atp) 75in (5 55 5 — 505 ) BB (439)

If a(p,q) or b(p,g) is a polynomial in p and ¢ of at most 2nd degree,
we have a special case for which the bracket expressions ((a,b)) and
(a,b) coincide.

The correspondence (4.21) is a solution of IIT and IV. We have
not investigated the possibility of other solutions with the same
parameters $ and gq.

5. Quasi-distributions.

5.01 Proper and improper representations. With We y1's cor-
respondence (4.22) as a special solution of

1< 1 I
if k < k(p,g) and a <— a(p,9),

then Tr(ka) — % / dp dg k(p.g) alp.g) v

(with parameters p and ¢ and density function p(p,q) = 1/h), we
obtain a special case of a transformation between a representation in
terms of operators k and a and a representation in terms of functions
k(p,q) and a(p,q). Quantum statistics are usually represented in
terms of operators, classical statistics in terms of functions. We as-
sert that the usual description is also the proper one. The statistical
operator k of the quantum representation and the statistical distri-
bution function %(p,q) of the classical representation are non-ne-
gative definite, but in general the quantum %(p,q) and the classical
k are not. This makes that for orthogonal states, for which

Triky) = 5 [[dpdg hipg) kalp.g) =0, (501

the product k;k; or &;($,9)%k,(p,q) vanishes in the proper representa-
tion, but in the improper representation it need not. The equations
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of motion of the quantum k are described by infinitesimal unitary
transformations, those of the classical k(p,g) by infinitesimal ca-
nonical transformations (contact transformations), but the equa-
tions of motion of the classical k and the quantum k(p,q) are in
general not of these types. Because the improper representation is
formally equivalent to the proper one, it is (provided it is not mis-
interpreted) a correct description, though it is in general a rather
impracticable one.

In spite of its deficiences, or rather because of them, we discuss
some aspects of the improper representation of quantum mechanics
in terms of k(p,q) and a(p,9), i.e. the quasi-statistical description of
the Ist kind Q! (cf. 1.19). It more or less illustrates the ways along
which some opponents might hope to escape B o hr’s reasonings
and von Neumann’s proof and the places where they are
dangerously near breaking their necks.

5.02 Transition functions. For the transition functions Z,,(p.q)
corresponding to the transition operators (1.03) according to (4.21)
we find with the help of the g-representation (occasionally expres-
sing the inner product explicitely by an integral) similar to (3.16)

bulp) = 3 i ay 3 ag o) FH T g

x8 i, _z2
—fdx oL(q) e2 B er e 2 W g g)
— ' LA _i)
fdx cp.u(q + 2)67‘ cpv< ) (5.02)

Because the wave functions ¢, are only determined but for a
factor ¢**7u (y real), the &,,(p,g) are only determined but for a factor
Y= The distribution functions, which are thus obtained with
W e yl's correspondence 2) become identical to those given by
Wigner19),

5.03 Proper value. In a distribution k or k(p,q) a quantity a or
a(p,q) can be regarded to have a proper value if the condition (2.10)

Tr(kf(a)) = f(Trka)) (5.03)

or

[ ap dghipg) fap) = 1 (5 [[ dp dg kp) atp) (5.09
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is satisfied for every f. Whereas the validity of (5.04) is for a proper
(non-negative definite) k(p,9) already guaranteed by the validity
of the special case f(a) = 42, it is not for a proper k or an improper
k(p,q). For a proper k the validity of (5.03) or (2.11) requires that a
is of the form

a(xp + ¥q) (5.05)

and k an eigenstate of a. For any &(p,g) the validity of (5.04) re-
quires that %(p,q) is of the form

3(a(p.q) — ), (5.06

which is a proper (i.e. non-negative definite) one. Because (5.03) and
(5.04) are identical, the conditions (5.05) and (5.06) are equivalent.
This means that the eigenstates of the operators a(xp - yq) and
of no other operators correspond with proper {and orthonormal
and therefore non-overlapping) distributions of the form (5.06), in
which a,, is the corresponding eigenvalue. This case would be rather
encouraging for a statistical description of the Ist kind S?, if it
were not just an exceptional case.
The eigenfunctions of a(xp + yq) are in g-representation

1 ¥

l H
Pplq) = me—"— (=2 p1—p+i) for x £ 0,
; (5.07)
%p(@) = /v 3(yg —p) e* 7 for x = 0.
(y(e) real arbitrary). The corresponding eigenvalues are a(p)
a(xp + yq)9, = alp)p,. (5.08)

p, which is the eigenvalue of xp + yq (for arbitrary fixed x and y),
runs between — oo and —+ oo. The domain of eigenvalues of
a(xp + yq) is therefore the same as that of the functions a(z)
(— oo <z < co). This means that the domain of the proper values
of observables, which have such, are unrestricted by quantum
conditions.
Inserting the eigenfunctions (5.07) in (5.02) we get
—r

A e P TP
kyv(ﬁ,q)=3<x1>-+~yq-9—“§ﬁ)e’»((y e T ) (5.09)

(The expression in brackets in the exponent in (5.09) is a canonical
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conjugate of xp + ygq). The %,,(p.q) are actually of the form (5.06).

5.04 The harmonic oscillator. After we have treated in 5.03
a special case for which the k(p,q) are of proper type themselves,
we now deal with a case for which their equations of motion are
of proper type. According to (1.43) and condition V’ they are if
((H(p,9).k(p,))) coincides with (H(p,9).k(p,9)) and according to
(4.38) this is the case for every k(p,q) if H(p,q) is a polynomial in
p and ¢ of at most 2nd degree. This condition is satisfied for the

harmonic oscillator, for which H(p,q) coincides with the classical
Hamiltonian

2
Hipg)= 2o 4 T 8 gy f , §'=qVmo. (5.10)
mco

m is the mass, w the classical circular frequency of the binding. We
consider p" and ¢’ as new canonical coordinates and omit the dash.

In g-representation the normalized stationary solutions of the
wave equation

/e . m( >
— T el =57 5(174‘9 a(9) (5-11)
are
onlg) = ey (‘1—>e“""‘" (n=0,1,2,....). (5.12)
T Ve Ve Vh
The Hermitian polynomials H, <-\—/q—%> have the generating
function
_f +2§(1 Jove) 1 E " q
4 = — | == -
; b (\/h> H(WL> (5.13)
(5.02) becomes with (5.12)
%
+Z
1 ! (a+%) 7 2)
k»m )= — dxe 2 2Hm —_—
. \/2’"+"n!m!nhf VE
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With (5.13) we get

R [ E )m ( 1 )n —
m% min! (7}% :/'"71 kﬂm ('p:Q) €

1 z2 1 xr 1 z: 1 x 1
f Iy o3 O (8 g w5 -y e )

-

|
l

2 L[t +i0) tg —i0) —2£ (¢ + i) —27 (¢ —ip) +2¢n)

gy 1 2 LM 2 T2 x
=2 )F’-v%:-—() M!v!x![_f{ Slgtip )} {'ﬁ”(q"z@} {"ﬁi*‘] (5:19)
This gives

e A s g min () — 1}&
2 Tl e T ( R
kmn(pJQ) 2 vminie P (m———x) ‘(n——-x) ‘KT (?Jf”if’) N
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] (gmip)n—x (%)’T K g im—n)wt

bm—tl in (m,n) (_" 1)&

S _1.. 2.0 2
=2 m!n!""@“’]/m 2.1 g2 —
Vmlnle 7 P ED) Zo ) = 5]
j!min {m,m)—K

[ e
Vln! g~% %(p’wﬂ V_% (p2L :-z)l
max{m,n) > 7 4

m—n |

=2 (__. 1}max(m,n}

3 [sn—nj {arc Df—*
) M B CATS

The L‘/{‘) are associated Legendre polynomials. &,.(p,q) is
separated into a product of functions of the canonical conjugates

Hp* 4 ¢%) and arc tan (p/g). The Eualp,g) actually form a complete
orthonormal system. For the distribution function k,,,(p,q) of the
m’ eigenstate of 1(p? + q?, the average value of }(p? + ¢%) is
(m-4-$)k, but it is not a proper value.

With (5.10) the transformation (1.47) gives the contact trans-
formation determined by

a d
%swwg,_@%zmﬁ (5.17)

with solutions

P = a cos (wt — ), ¢ = a sin (ot —x). (5.18)
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The representative point in the phase space of a superstate rotates
uniformly about the origin with constant radius v'$2 4 ¢? and cir-
cular frequency w. The rotation of the entire distribution Z,,(.q)
with this circular frequency o produces according to the last factor
of (5.16) a periodicity with circular frequency (m — n)o (like a
rotating wheel with |m — n | spokes). Also this would have a
hopeful aspect for a description of type S!, if it were not one out of
a few exceptional cases.

5.05 The scale system. We shortly return to the measuring process.
We start with the most favourable case for a description of the Ist
kind S! and consider a system / in the measuring chain, for which the
distributions ky,,(#;,¢;) do not overlap. The corresponding ki,
are then eigenstates of an operator of the form xp; + yq; (cf. 5.03).
The scale system is a special case (¥ = 0), which shows all essential
features. According to (5.09) we have

AR L 5.19
klpv(?bq;) = S(ql_—q’i‘#>eh @y —apiti ( )

By ignoration of one or more systems of the measuring chain the
non-diagonal functions (u # v) are dropped and only the diagonal
functions remain. Instead of (5.19) we get

Ry (ug) = (@ — qu) (@ — ) (5.20)

(The latter 3-function is actually a remainder of the ignored distri-
bution functions). The effect on (5.19) of ignoration of other systems
is formally the same as that of integration over p with density
function 1/A. This illustrates even more plainly than before (cf. 2.07)
how the correlation between $; and other observables is completely
destroyed by the reading of g;. So far there is no difficulty with an
interpretation of the Ist kind. We are only concerned with the value
of ¢;, which is a proper value and uniquely determines the distribu-
tion (5.20). The value of #; is indifferent. As soon as inference is
made about other systems in the chain with overlapping &,,($.9),
correct results are only obtained after the integration over $, (with
density function 1/k) has been performed (cf. 1.19). In a description
of the Ist kind this integration could only be interpreted as an
averaging over a great number of measurements. But the integra-
tion has already to be performed in a single reading and therefore an
interpretation of the 1st kind is excluded.
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506 Einstein’s paradox. The multilateral correlated state
(2.97) has according to (5.02) the distribution

kizpq Po(P1,91; P2,92)= 3(q1 — q2 + Q)3(p1 + P2 — P). (5.21)

This shows clearly the correlation between ¢, and g, and between
and p,.The similarity to a genuine distribution of the Ist kind is very
tempting.

Because (5.21) is highly singular we also consider the distribution

! 144 PI PII
kyapgprgre (D191 P2,g2) = 8(?1 —q2+ Q g Y ) 3(7—"1 + po— '—‘_;—‘*

i P’—P" -"— QI_Q/I
. e" % (71+94) 2z "eh (B1—~D4) - (522)

(properly instead of {5.21) we should use eigendifferentials). The in-
fringed distribution after a measurement of ¢, or p, can be found
from (5.22) by integration over p, or g, respectively with density
function 1/k. This gives

[ e 14 t PP 4 PPy
.}111_8 (% _ qz _+__ _Q_%_Q___) e_ 3 (qx‘*‘QI) 2 8" (1’1_ 2 )(Q —Q”) (523)
or
' "y & =0 _ L 9L b pu
711__8 (i)l _{__ 252 _?j;_) eh (b1—2) 2 e & (‘71+ D) )(P P’) (524)

respectively. For the distribution (5.21) this becomes

%3(‘11—?2-?‘@) or 71;3(1’1 +p2—P). (5.25)

The correlation between $; and , or ¢; and g, respectively has en-
tirely disappeared.

If the state of 2is entirely ignored, the distribution of the infringed
state of 1 can be found from (5.22) by integration over $, and ¢,
with density function 1/4. This gives

; { i PrQ/—PrQ
1 —gae—r e-,’; £2(Q—Q"") e—%—o—z—-&

- (5.26)

For the distribution (5.21) the result is 1/k, the infringed state is
entirely undetermined (the normalization can be understood from
(5.26)). A measuring result g, = g;, or p, = p,, selects from (5.23)
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or (5.24) for 1 the distribution
1 ' 1 _L P =P _P’+P” , "
i 8<q1——q2# + Q Z Q ) o e 5 g (b——"5—)0'—0" (5.27)

or

¢ o3 Q=0 s QHOVN L, o,
71;8<P1 + PZP_E%I:— eh (br—>2p) 2 ¢ * (Q1+ 2 )(P P ). (528)
For (5.25) this gives

30— g + Q) o T3+ P —P).  (5.29)

Also in this example, in which all distribution functions derived
from (5.21) are non-negative definite, it is already the particular
part of the immediate integration over half of the parameters even
in a single measurement, which does not fit into an interpretation
of the 1st kind.

These few attempts and failures to carry through a genuine statis-
tical description of the 1st kind S! may suffice to illustrate the inten-
tion and troubles of such a conception.
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1. INTrRODUCTION

Statistical concepts play an ambiguous role in quantum theory. The critique of acts
of observation, leading to Heisenberg’s ‘ principle of uncertainty’ and to the necessity
for considering dynamical parameters as statistical variates, not only for large aggre-
gates, as in classical kinetic theory, but also for isolated atomic systems, is quite funda-
mental in justifying the basic principles of quantum theory; yet paradoxically, the
expression of the latter in terms of operations in an abstract space of ‘state’ vectors is
essentially independent of any statistical ideas. These are only introduced as a post hoc
interpretation, the accepted one being that the probability of a state is equal to the
square of the modulus of the vector representing it; other and less satisfactory statistical
interpretations have also been suggested (ef. Dirac(1)).

One is led to wonder whether this formalism does not disguise what is an essentially
statistical theory, and whether a reformulation of the principles of quantum mechanics
in purely statistical terms would not be worth while in affording us a deeper insight
intc the meaning of the theory. From this point of view, the fundamental entities
would be the statistical variates representing the dymamical parameters of each
system; the operators, matrices and wave functions of quantum theory would no longer
be considered as having an intrinsic meaning, but would appear rather as aids to the
calculation of statistical averages and distributions. Yet there are serious difficulties
in effecting such a reformulation. Classical statistical mechanics is a ‘erypto-deter-
ministic’ theory, where each element of the probability distribution of the dynamical
variables specifying a given system evolves with time according to deterministic
laws of motion; the whole uncertainty is contained in the form of the initial distribu-
tions. A theory based on such concepts could not give a satisfactory account of such
non-deterministic effects as radicactive decay or spontaneous emission (cf. Whit-
taker (2)). Classical statistical mechanics is, however, only a special case in the general
theory of dynamical statistical (stochastic) processes. In the general case, there is
the possibility of ‘diffusion’ of the probability ‘fluid’, so that the transformation with
time of the probability distribution need not be deterministic in the classical sense.
In this paper, we shall attempt to interpret quantum mechanics as a form of such
a general statistical dynamics.

I. QUANTUM KINEMATICS
2. THE EXISTENCE OF PHASE-SPACE DISTRIBUTIONS IN QUANTUM THEORY

In the accepted statistical interpretation of quantum theory, the possible values of
a dynamical variable s are the eigenvalues s; of the corresponding operator (observable )
72
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s in the Hilbert space of the state vectors. The probability of finding s, in a state ¥ is
then equal to the square of the modulus | a;|? of the projection a; of i on the corre-
sponding eigenvector yr;. A complete or irreducible representation for a given mechanical
system is given by a set of commuting observables s such that their eigenvectors i,
span the whole space, i.e. such that any ¥ = %ai ;. Hence we obtain directly from

Y the joint distribution of the variables s. It is known, however, that these s are not
sufficient in themselves to specify the system completely; we need, in addition, another
complementary set, say r, which does not in general commute with s; for example,
a complete representation is given by either the Cartesian coordinates g or their con-
jugate momenta p, but the complete dynamical specification of the system requires
both q’s and p’s. Hence, the phase-space distributions of complete sets of dynamical
variables, which are required for a statistical theory, are not given directly by 1.

It has been argued (3) that such distributions do not exist, because of the impossi-
bility of measuring non-commuting observables simultaneously. This argument is not
conclusive for two reasons; one is that the impossibility of physical measurements does
not preclude us from considering the proposition that there exists a well-defined pro-
bability for the two variables to take specified values or sets of values; in fact, the theory
of probability is introduced to deal with such situations where exact measuremens is
impossible (see Jeffreys (4)). The other reason is that it is possible in principle to form
operators G corresponding to functions G(r,s) of non-commuting observables; the
expectation value of G in a state ¢ is then given by the scalar product (¢, Gyr). Butthe
joint distribution of » and s can be reconstructed from a set of such expectation values,
e.g. the values of all the joint moments 7%s*. The formalism of quantum theory allows
us therefore to derive the phase-space distributions indirectly ¢f @ theory of functions
of non-commuting observables is specified and conversely.

There are serious difficulties to be met, however, in defining these distributions
unambiguously. This may be seen, for example, in the case of the harmonic oscillator.
The energy eigenvalues form a discrete set E, = (n+4)kv. The corresponding eigen-
functions u,(q), v, (p) are sets of Hermite functions, continuous in p and q. Hence any
joint distribution for p and ¢ in a state consistent with the individual distributions

Y(g) v*(q) =i>% afa,uf(q) uy(g) and ¢(p)d*(p) =i2kafakv;-"(p)vk(p)

must extend continuously over the whole (p,¢) plane, while any joint distribution
for the energy H = }(p?/m+ 2nmmygq?) and the phase angle = tan— p/q consistent with
probabilities a,, ¥ for E,, will be concentrated on a set of ellipses

$(p¥m+ 2mmrg?) = (n+3) ho.

We are thus forced to the conclusion that phase-space distributions are not unique for
a given state, but depend on the variables one is going to measure. In Heisenberg’s words (5),
‘the statistical predictions of quantum theory are thus significant only when combined
with experiments which are actually capable of observing the phenomena treated by
the statistics’. Since the introduction of statistical concepts in atomic theory is
justified by an analysis of the interaction between observed system and observer,
it is perhaps not surprising that different distributions should arise according to the
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pxperimental set-up. For example, measurement of the spectra of an atom corresponds
to a distribution with discrete values for the energy and angular momenta. Direct
transformation of this distribution to (p,q) space, corresponding to a distribution
concentrated on discrete orbits, would not be appropriate for the treatmenst of collisions
of the same atom with a beam of electrons; the appropriate distribution in the latter
case arises from wave functions filling the whole space continuously, and is incom-
patible with discrete orbits.

The statistical interpretation of quantum kinematios will thus have to give methods
for setting up the appropriate phase-space distributions of each basic system of dynamical
pariables in terms of the wave vectors, and for transforming such distribution into
one another.

3. PHASE-SPACE DISTRIBUTIONS IN TERMS OF WAVE VECTORS

We denote by r a set of commuting observables or operators giving a complete repre-
gentation, 8 the complementary set, such that s do not commute with r and that r
and s together form a basic set of dynamical variables, characterizing a given system;
r and § are their possible values or eigenvalues (these are, of course, ordinary com-
muting variables). The most natural way of obtaining the phase-space distribution
F(r,s) is to look for its Fourier inverse, i.e. the mean of exp {i(rr+6s)} (known in
statistical terminology as the characteristic function). On forming the corresponding

operator ) in
M(r,6) = oxp {i(rr +68)} = S (r +0s)", (3:1)
n !
the characteristic function in a state i is given by the scalar product
M(7,6) = (, D). (3-2)
From well-known formulae for Fourier inversion, the phase-space distribution funetion
i8 then 1 , )
F(r,s) == f f (¢, gm0 4y e=4rm+09) dr 40 (3-3)
for continuous eigenvaluest, and
T T
F(ry,s,) = lim —l—gf f (1, €¥r 08 yr) g=ilrritis) dr 4G (3-4)
T->ca 4T —-PJ -1

for discrete eigenvalues 7;, s, (Cramér (6))1.
The operator (3-1) takes a specially simple form for canonically conjugate coordinates

and momenta q, p (Pq—qp = %/i),
M(r, 6) = e¥ifird gifid girD = g¥ird gida giirp (3-5)

(ef. Kermack and McCrea (7). From the second expression for M, we find
M(r,0) = fw*m— Yir) €99y (g + i) dg, (3+6)

t When no limits are specified, all integrals are to be taken as from —co to +co.
1 The term distribution function is used in this paper to denote the probability density of
eontinuous eigenvalues, and the finite probability of discrete eigenvalues.
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and hence by Fourier inversion
1 ,
F(2,9) = - [ 1Ha—r) o tg + i, (3)

an expression first given by Wigner (8). From the first operator form of M in (3:5),
and by expressing ¥(g) in terms of the momentum wave function ¢(p)

V@) = 1 [9(o) coarap, (59)
we find, by a series of partial integrations,

M(r,0) = 17 [ [((@) p(p) evam st semson apag

= p— f f e¥(if) %ap dg [ (q) (p) erait] gir2+99) dp dg, (3-9)
and hence the alternative expression for the phase-space distribution
F(p,q) = b AP0 22 [y%(q) () e'Pe™). (8-10)

It ig shown in Appendix 1 that the Heisenberg inequality ApAg > 4% follows directly
from the expression for F(p, ¢) given above. In this sense, the expression of the phase-
space distributions in terms of the wave vectors may be considered as a more complete
formulation of the uncertainty principle than that given by the inequalities, since it
should contain all possible restrictions on the probabilities and expectation values of
non-commuting observables.

This choice of expression for the phase-space distributions constitutes a new hypo-
thesis, not already included in the basic postulates of quantum theory as they are
usually formulated. The discussion of certain difficulties associated with this choice,
in particular the appearance of ‘negative probabilities’ for certain states, is made
clearer by further developments of the theory, and will therefore be deferred to §15.
Other possible choices and the possibilities of experimental verification are discussed
briefly in §17.

4. PHASE-SPACE EIGENFUNCTIONS
If we insert the expansion of the wave vector i in terms of an orthonormal set of

eigenvectors Vo= zz:aﬂ!rz (41)
in the expression (3:3) for F(r, s), we find for the latter the expansion
F(r,s) = Satayfulro) (42)
where the functions f(r, s) are the Fourier inverses of the matrices
my(7, 0) = (Y, X Yry) = mi(~, —6) (4:3)
of the operator (3:1) in the representation of the ;. Explicitly, we have
1 . ,
flk(r: s) == ZTFE J J‘(iz#l? gtire4-08) %) e~ ilrr+88) dﬁ, (4.4)

. 1 (7 (T ,
fm(r s S ﬁ) = 1]1_1_20 Zﬁ f 2 f _T(%, gir+68) wk) g~ irrat08e) (- 46, (4 5)
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where (4-4) refers to the case of continuous eigenvalues 7, s and (4-5) to that of discrete
eigenvalues 7,, s4. The functions fy(r, s) form a complete orthogonal set in the Hilbert
space of the phase-space functions F(r, s), satisfying the relationsf

ff.fzk(f »8) [Pt 8) drds = b8y Oy, (4-8)
T Fulr )i = =) 3(6=9), (47)
and also the ‘self-orthogonality’ relations
j Julr 8) drds = Oy, (4:8)
X fulr, 8) = B, (49)

In the general case, this follows from the fact that (4-3) and (4-4) or (4-5) form a unitary
transformation from a vector, say ¥y, of components ¥y*, ¥, in the product space of
the vectors Yr* with the vectors ¥, to fi,. The vectors ¢, form a complete orthogonal
(and self-orthogonal) set, and these properties are invariant under & unitary trans-
formation. Furthermore, it is easily seen from their definition that the f;, form a
Hermitian matrix with respect to their subscripts [, &

Judlr, 8) = fiilrs s). (410)

We shall see later (§§7 and 8) that the f;, can be interpreted as the eigenfunctions of

characteristic equations for the phase-space distribution functions, corresponding to

the eigenvalue equations of the y/’s; we therefore call them phase-space eigenfunciions.

In the case of the canonical coordinates and momenta ¢ and p, relations (4:6)~(4-9)

can be proved by elementary methods (cf. Appendix 2), and the fy(p,g) have the
explicit expressions, corresponding to (3-7) and (3-8),

1 )
Fulp,) = 3 [WHa—¥ir) e g - im) (@11)
JuD,q) = Wt dAIT0RU[YrH(q) ¢y p) ePaIT), (4-12)
Substituting the eigenfunctions y,(g) = 7~ ¢®'?% in a p-representation, we find
' + " X . .
Jou(®: ) = h"lt?(p -1—0—2—&) gawE IR, (4-13)

The expansion of F(p, ) in terms of fy»

F(p,q) = h“lﬁsb*(p')qb(p”) 3(10 -t ,_J;p ) eHr =2 dp” dp’

1 .
-5 f B*(p -+ 36) =% 3 ( p ~ $06) dO, (414)
is the equivalent of (3-7) in terms of the momentum wave functions ¢(p).

t Integration must be replaced by summation in what follows when the eigenvalues of r, s
are discrete.
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6. MBAN VALUES s OPERATORS AND MATRIOES OF FUNCTIONS
OF THE DYNAMICAL VARIABLES

The mean value of an ordinary function G(r, s) taken with respect to the phase-space
distribution F(r,s) is

G= ffG‘(r, 8) F(r,8)drds

- f f f f G{r, 8) (, elr™+09 4fr) g=Urr+08) iy dg dir 4G

- (v [ rcmmanad ), -
- where y(, 8) is the ordinary Fourier inverse of G(r, 5)
v(r,6) = f f Q(r, 8) e=%rr+09) g s, (6-2)
G is thus the mean of the operator
G- f f (, ) o409 47 4, (53)

which is thus the operator corresponding to the ordinary function ({(r, s) in our theory.

It now follows that the matriz Gy, of G in any representation of eigenvectors 1, can be
obtained by integration of the ordinary function G{r,s) with respect to the corresponding
phase-space eigenfunction fy,(r, 8)

G = [[01r,0) i 0)ras = [[[[ 6, exmsom ) arasaras
= (Y5 Gy (5+4)

Since fy;, is & Hermitian matrix with respect to [ and &, we see at once from (5-4) that
@y, will be Hermitian if Q(r, s) is real.

The operators and matrices corresponding to any function of the basic variables
r, § are thus uniquely defined by the phase-space distributions. In other words, our
theory of phase-space distributions is equivalent to a theory of functions of non-
commuting operators. Inversely, this theory of functions defines the phase-space
distributions uniquely.

In the special case of functions G{(p,q) of canonically conjugate coordinates and
momenta, (5:3) coincides with an expression derived by Weyl(9) on group-theoretical
considerations. An alternative expression corresponding to (3-10) for F(p,q) is

G = (W0 3%0p 22 G (q, p), (5-5)
where G(q, p) is obtained directly from the ordinary function G(p,q) by writing all
the operators p to the right (e.g. q"p™), and this order is maintained when applying the
operator ed#9%p % to G, (cf, Appendix 3 for the proof; see also McCoy (10)). The form
of the usual operators of quantum theory: energy, angular momenta, radial momenta,
etc., are not changed when they are derived by this method from the corresponding
classical functions of p and g.
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II. QUANTUM DYNAMICS

6. THE LAWS OF MOTION OF GENERAL DYNAMICAL STOCHASTIC PROCESSES

We now come to the statistical interpretation of quantum dynamics. What we have to
do for this purpose is to find the temporal transformation laws of the phase-space
distributions of quantum theory corresponding to the quantum equations of motion.
As mentioned in §1, this cannot be done within the framework of classical statistical
mechanics, which is a ‘crypto-deterministic’ theory, but appears rather as a special
case in the general theory of dynamical stochastic processes, We start therefore with
g brief survey of the integral and differential relations through which laws of motion
can be expressed for such processes. The theory will be developed for Cartesian
coordinates and momenta only.

The fundamental integral relation connecting the probability distributions F(p, ¢; )
and Fo( Do, 9o tp) &b times ¢ and ¢, for a given mechanical system is

Flp,q;t) = ff K(p, 9| 2o, 453 t—10) Fo 24, 903 to) 32040, (6-1)

where K is the distribution of p, g at ¢ conditional in pg, ¢, atb §,. K is therefore the
temporal transformation function, and must express the laws of motion of the system.
While Fy and F depend on the initial and final states of the system, K must be indepen-
dent of these states, and depend on the inherent dynamical properties of the system.
Hence the assumption that K is homogeneous, i.e. invariant for a translation of the
origin in ¢, and dependent only on the interval { -2, (as long as there are no external
time-dependent forces acting on the system).

K gives the transformation for finite intervals. We now derive the corresponding
infinitesimal transformation. The characteristic function A for the differences ¢ —£,
p~1 conditional in £, 7 is

A7, 07,8t —1o) =ff e10a-D+ oMK (p,q |9, £; 8 —1t5) dpdyg. (6-2)

We make the second assumption that in the stochastic processes of physics, the pro-
bability of a transition from &, 7 to ¢ +§, p =7 in & small interval £ — ¢, is of the order of
t—t,. For t =1, obviously K =d(p—7)d(g—§) and A=1. Hence (A—1)/(t—t,)
tends to & finite limit L when £ ¢,
. A-1
lim
t->ty t~ to

= L(r,8]7,6). (6-3)

We shall call L the derivate characteristic function. If M(r,0; t,) is the characteristic
function at ¢,

Mm&m=”WWWM£MM% (6-4)

then the characteristic function at ¢ is

M(r,0;1) = ”6“"’”’5’/&(% 0|7, &; t—to) Fo(n, & fo) dyd.
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Honce S =l [[25 cro pg, €5 ) ana

=f L(r,0\9,E) et F(n, £; t) dydE. (6-5)
This can be expressed in the operational form

-0 o) 00 (6:6)

(first suggested to the author by Prof. M. 8. Bartlett). (6-5) and (6-6) express the
infinitesimal transformation corresponding to (6-1) in terms of characteristic functions;
they can be inverted to express this transformation directly in terms of distribution
functions. This may be achieved in two ways; if L admits a Fourier inverse

8(pa11.8) = [[ Lir,0 |1, svv-mros-anaras, (©7)
we obtain for F the integro-differential equation
570,00 = [ 8(0,a 11,8 P, &5y dnds. (6:9)
If, on the other hand, it is possible to expand L in the form

01,6 =t [[ 5§ G000 = G g, 1t

=o (n—r)lr! t—ty

® ()T (i0)

—ngorg (n T)"I‘I m"(n g) (6'9)

(where the a,,(7, &) are called the derivate moments of the system), then F satisfies
the differential equation of infinite order

0 n ( ]_) a)n—r(a)r

g . — i 1)), .10

sFean=3 3 S (2T () o P @0
This reduces to an equation of finite order if the expansion (6-9) for L terminates,
ie. if the derivate moments vanish above given powers of p and g.

7. EQUATIONS OF THE MOTION FOR THE PHASE-SPAUE
DISTRIBUTIONS OF QUANTUM THREORY

In order to derive the equations of motion for the quantum phase-space distributions,
we look for the time derivatives of their characteristic functions, We find from the

Poisson-bracket form of the quantum equations of motion
o= [rommypoa - [ropm-mmyga @)

where M(r, 0) is the characteristic function operator (3-5), and H the Hamiltonian
operator, expressed from (5:3) by

H= ffW(o*, ) eXor 0 do dp, (72)
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W{(c, p) being the Fourier inverse of the corresponding classical Hamiltonian H(p, ).
Hence, using expression (3-5), we obtain

oM i .
-—é-z— = —fffei’iﬁ(‘rﬂ-‘-o‘ﬂ) [e‘l:ﬂo"a —_ e‘tﬁ‘f}t] W(O‘, 'u) zﬁ‘* (q)el(ﬂ+ﬂ)ﬂe’f(7+7)”¢‘(q) dq do- dlu’

— —ffffsm é‘ﬁ('f/[r 0*6) e’t[(1'+0')17+(0+l4n] W(a' ﬂ)

x HARPRBSlT-b)¥(g) B p) 7] dp dq derdp.
Using expression (3-10) for F(p,q; t), we obtain the two equivalent expressions

o f [0+ 416, g~ ir) - H(p— 108, + Pim) (o, g5 eniindpay, (1)

= [Jetemoffant[ 2t~ w0 P ) tpde, (79

where a/apH, 0/9gx in the right hand of (7-4) operate only on H and 8/0py, 9/9¢x only
on F. The comparison of (7-3) with (6-5) gives the derivate characteristic function

L(r,0| p,q) = 7 [H(p+ 446, ¢~ ¥r) - H(p — 6, g+ $7)]. (7:5)
If L possesses a Fourier transform
80,0195 = [ [0+ 418, €~ 4 — By — 96, £+ )] exr-m06-0 o, (1)

then F(p,q; t) satisfies an integro-differential equation of form (6-8)

0
2B (,g:0) = [[S(o.a17.6) Fon. € nane (77)
with the kernel § given by (7-8). Similarly, we find from (7-4)
2 2. kfo @ 9 90
a—tlf’(p,q, t) = %SmQ[@@;*@;@;}H% q) F(p,q; 1), (7:8)

which is easily shown equivalent to (6:10) with derivate moments

0

a 2n+41—r
om0 = (=1 (G )(55) T H,0), taapg)=0.  (79)

Inversely, the quantum equations of motion, and in particular the Schrédinger
equation, may be derived from the equations above for F(p,q¢;¢) (cf. Appendix 4).
There is thus complete equivalence between the two.

Finally, we may notice the analogy between the right-hand side of (7-8) and the
olassica] Poisson bracket. This may be generalized in the following way. It may be
shown by & method similar to that leading to (7-8), that the commutator iA[RG ~ GR]
of two operators R, G obtained (e.g. by (5'3) or (5:5)) from the ordinary functions
R(p,q), G(p,q) is identical with the operator corresponding (by the same rules) to

2 s o 0 ¢ 0 ]
At 9 9 % %\ Rip g &, q). 7.10
S oot s BP0 B(2.0) (7-10)
In other words, (7 -10) i the analogue of the classical Poisson bracket when the laws
of quantum mechanics are expressed in phase-space, and the commutator is the
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corresponding operator in ag- or p-representation. Itis aso seen from this that oper-
ators whose classcd analogue is 0 may correspond to non-vanishing phase-space
functions in the present theoryf.

8. THE CHARACTERISTIC EQUATIONS OF PHASE-SPFACE EIGENFUNCTIONS

The expansion of the distributions F(p, q; t) of a conservative system in’ terms of its
energy phase-space eigenfunctions fy,(p,q) is, from (4:2),

F(p,q;1) =12;;afakfm(p, q) eXBi~ERiA, (81)

Substituting in (7-7) and identifying term-by-term, we see that the f;;, are the eigen-
functions of the homogeneous integral equation

i
£ul.0) = g | [ 5201780l £) . (8:)
The kernel 8 can therefore be expanded in terms of the f,
8(p,q[n.8) = 2m'iz;c(E¢ ~By) ful 2, 9) f5n, £)- (8:3)

Smilar characteristic equations can be found for the eigenfunctions g,.(p, q) of
any operator G corresponding to the classcal function @(p,q). Lety, be the eigen-

NG Gulg) = 74u0). (84)
Calculating the mean of the commutator [G, M] from the two sides of (8:4)

f w(q) [GM - MG wy(g)dg = (vF —7) f f gier420g,.(5 6) dpdg

- [[ 16t +416,0~ 19r) - 60— 196,4+ Fir)lgu(p. @ >+ dp g
2 ([ . K[o 8 9 9
— UTDH0D qiry = | s o e e —— .
7 [[eroasinf[ 22— - 2] 6t g)outp a)ipda, (®%)
we find the characteristic equations for g

JJP Salp,917,8) gu(n, &) dndé

29 . fifo @ 3 8]
= e §iN = | — — — — G : ,q), 8‘6)
,yk_,y:';;. 2[apgaqa apGan (P g) g‘tk(p Q) (

o 4 r
925 q) - o

where the kernel
8ot 11,8 = 5 [ [ 600+ 10,9~ 41r)~ G~ 190,0-+ Y etro-+46-01 drdg

= 2mi 3 (7 - 1) Gulp: 9) Tkl €)- (87

+ This question was raised by the referee.
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9. TRANSFORMATION EQUATIONS FOR FINITE INTERVALS

Having derived the infinitesimal transformations in phase-space, we now return to
the transformation equations for a finite interval (cf. § 6)

F(,41) = | [ Kua(,2] 20003 t~10) B 0 ) dpoci
(1)
By(50:003 ) = [ [ Ko 0] 2,05 ta=1) Fi2 05 ) dpdg.

We introduce the operator solutions of the Schrédinger equation
(g5 B—1t) = e WMy (g) (9-2)

for an arbitrary orthonormal set of functions u,(g). The corresponding phase-space
funotions are

1
Gus( 2o 00) = 5 [8{aa — ¥ir) 420y g+ ), (03
1 .
Yirl D, @5 t—19) = 5 HE(@ =375 t— 1) e=98 (g + JBir; t—t) dr
=lZmU¢z(to"t) Gl D> 9) Uit — o), (9-4)
where Ut —1o) = f’“’iﬁ (q) e~ Iy, (q)dg. (9-5)

On substituting in (9-1) the expansions of F(p,q; t) and Fy(p,, ¢,; %) in terms of the
gy 80d vz, @ term-by-term identification shows that

Yl 2545 £ —1p) =f K1o(2:9| 2o 205 t—t0) Gur Lo 90) 400 345,

Gir{Po> %0) =f Koi(Po: 20 l P,9; t—t0) V(D ¢; t—2o) dpdy. (9-6)

The expansion of K, in terms of the g;;, : K, = XA, ¢ has coefficients

Ay = hffjflo(P» 7| Po> Qo3 £ —40) G 20s o) A0a 82 = By, 25 t— 1),
and similarly for K, so that the two are identical,
Ky = Ky = K(p,q | Pordos t—1y) = hizkgﬁc(.’!’o» 00) V(D 4 t—1y). (9:7)

We have thus found an expression for the transformation function K in terms of the
gu 8nd ,,; from it we see that K satisfies the iteration relation

K(p,,q, | Pos Qos t—1p) =f K(ps ¢ I D115 ta— 1) B(D1, 41 | Pos o3y —2o) dprdgy.  (9°8)

The transformation (9-1) form therefore a continuous unitary group. Stochastic pro-
cesses satisfying the iteration relations (9-8) are known as Markoff processes (cf.
Hostinsky (11); see also Jeffreys (12)).

The energy eigenfunctions fi;(p,q) of a conservative system are easily seen from
(9-4) and (9-6) to satisfy the homogeneous integral equation

ful2,9) = QJ(E‘_E")(t—t")’ﬁffK(P’ q | D> Qo3 1= o) Fur( Doy 2o) AP0 de. (9-9)
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The transformation function of a comservative system therefore forms a kerne]
symmetrical in p, ¢, antisymmetrical in ¢

K(p,q| Do, Qo3 t—1,) = k{%fik(?ﬂ) JHd(Pos qo) e¥B- TR R

= K (20 90| 2, g to—1)- (9-10)

An alternative expression for K can be given in terms of the transformation wave

fumation Plg] goi t—to) = Sub(@)unlgy) eBst-tom. (e-11)
n

Substituting expression (4-11) for f,;, in (9-10), we find

E(p,q| por go; t—tg) = 2 f f e Uen=1o29 Yrk(q — YA | gy — Hire) W(g + ¥0r | gy + Hiry) dr
(9-12)

10. TEE RELATION BETWEEN INFINITESIMAL AND TINITE TRANSFORMATIONS:
APPLICATION TO WAVE PACKET AND COLLISION PROBLEMS AND TO THE
CALOULATION OF TRANSITION PROBABILITIES

It is seen from the expansions (8-3) and (9-10) of § and K in terms of the energy eigen-

functions that )
(24| 20> 40) = 11t 2= K0, 4| 20, Go3 8= to)- (10-1)

Inversely, K can be expanded in terms of S
K(Z’:QIPO:‘ZO: —tO) (t—
SRR SECETARI e e B P R I PATCNEA LAY

n=0 (n+ !
"7‘m gn | Pos %o d')hdgl d7711,d§n,' (10'2)

This is easily verified by substituting from (8-8) for S and comparing with (9-10) for K.

Since S has a simple expression, obtained directly from the Hamiltonian, (10-2)
supplies also a convenient method of approximation for X when the energy eigen-
funections are not known exactly. We have thus a new method of solving problems i
quantum mechanics, without having to solve the Schrédinger equation.

The distribution F'(p, ¢; t) of a wave packet at any time ¢ is obtained by the trans-
formation (9-1) from the initial distribution Fy(p,,q,; t,) at t,. We can apply this 0
the solution of collision problems by introducing a suitable initial distribution Fy
describing the motion of the two particles before the collision, and calculating the
transformation function K by (10-2) and (7-6) from the Hamiltonian for the colliding
particles.

These methods can also be applied to the caleulation of transition probabilities.
Let f;.(p,q) be the energy eigenfunctions corresponding to the unperturbed Hami-
tonian H,. We can approximate for X from (10-2), using the kernel § corresponding
to the complete Hamiltonian H = Hy+ H, (where H, is the perturbing term). Taking
a single diagonal eigenfunction fi,(py,qo) 88 the initial distribution at ¢ =0, the
expansion of the transformed distribution F,(p, g; t) at time ¢ in terms of the f,;, is

Fk(p: q; t) =n2m“7tn“kmfnm(p: Q)' (1003)
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The transition probabilities ¢, (f) from state & to state n are the diagonal coefficients
Sgn = %hn Oy, Whose expression in terms of K will clearly be

Chn = Cfon OCkn =f f f E(9,¢| Do 05 t) el Po> Go) frn > @) Do dg dpdg.  (10-4)

11. TEE PROBLEM OF DETERMINISM IN QUANTUM MEOHANICS

The present theory should help to elucidate the question whether quantum mechanics
is deterministic in the classical kinetic theory sensef, since it permits a direct com-
parison between the two. The infinitesimal time transformation of quantum phase-
space distributions (7-8) may be written in the form

ofF 2. ffo 0

S+ 305 e 5] (0,0 (0,050, (111)
where {0/dp, 0/0g} is the phase-space differential operator giving the classical Poisson
pracket. The corresponding transformation of classical kinetic theory is given by
Liouville’s theorem oF (8 o I 7

o | Ep0 Pl =0 (112)

Its determinigtioc character may be seen from the fact that the characteristics of this
first order partial differential equation are simply the classical paths in phase-space.
Alternatively, we may say that F is an integral invariant of the transformation
generated by the operator {3/0p, 9/0q}; an element S, of phase-space will transform to
8, in the interval ¢, and

f (90, 00)dpodts = f F(p,:1)dpdy. (11-3)

This no longer holds in the case of quantum theory; the transformation generated by
the operator (2/%) sin 47{0/0p, 9/9q} is equivalent to {0/dp, 9/0g} when applied to Hp, Hg,
but not in general when applied to HF, so that while §; will transform into §, exactly
as for the corresponding classical system, yet generally

L F (Do, g0) dpodgy + f F(p,q)dpda. (11-4)

Henoce the present theory leads to the conclusion that quantum theory is not generally
deterministic in the classical sense. ‘

In the correspondence principle limit, when A—0, the quantum equation (11-1)
is seen to reduce to the classical equation (11-2); this will equally well be the case if
the Hamiltonian H(p,q) is a second degree polynomial in ¢ and p, leading to the
surprising conclusion that systems such as a free or uniformly accelerated particle, or
& harmonic oscillator, are deterministic in quantum theory: this should not be taken
too seriously, since even small perturbations or non-linear terms would, according
to (11-1), destroy this deterministic character.

The phase-space transformations with time of quantum theory form a continuous
unitary group, which reduces therefore to the group of contact transformation of

T Of. in this connexion Whittalker (2), Jeffreys(12) and also Reichenbach (25).
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classical mechanics in the correspondence principle limit and for the ‘deterministic’
quantum systems whose Hamiltonian is asecond degree polynomial; the transformation
function K of § 9, which is the probability distribution of p and g at time ¢ conditional
in Py, g, ab time ¢,, degenerates in the classical limit to a singular distribution, with
complete concentration of the probability ‘mass’ on the classical path in phase-space
igsuing from p,, ¢,; K may then be expressed as a product of delta functions

K = 8[p—p(p0 90, t— 1)1 (7 — 9(10: 20: t — )1

where p and ¢ are the classical solutions as functions of the initial values p,, g, and the
interval ¢t —?,. The phase-space distributions F at ¢, will be obtained from F, at ¢, by
substituting the classical solutions for p and g. This has been shown directly by Prof,
M. S. Bartlett and the author in the ‘deterministic’ cases of the free and uniformly
accelerated particle and the harmonic oscillator.

Owing to the fact that the transformation is unitary, the eigenvalues of the integral
equations (9-8), (9-9) arp all of modulus 1; in fact, of the form

Agp = eMBi—Eu(—tola,

In the theory of discrete Markoff processes (where the random variables have only
a discrete and finite set of possible values) characteristic roots of modulus 1 for the
transformation matrix correspond to deterministic processes (non-degenerate processes
involving roots of the form [e~#¢-)| < 1). Yet wesaw above that the quantum mechanical
process is not deterministic in the classical sense. The explanation of this discrepancy
must await the further study of unitary-Markoff processes of this type.

I, QUANTUM STATISTICS

12. (1BBS’S ENSEMBLES AND PHASE-SPACE DISTRIBUTIONS

A possible field of application for the statistical approach to quantum mechanics lies
in the kinetic theories of matter, where the joint distributions of coordinates.and
momenta are required. As a first step in this direction, we shall study the equilibrium
distributions in large assemblies of similar systems.

The notion of Gibbs’s ensemble is translated into the quantum theory of statistical
assemblies by introducing ‘mixed’ states, where the assembly has a probability P,
to be in a state ¥, and the average of any dynamical variable @ is given by the diagonal

sum G= 2 (s G%) P, (12'1)

(Dirac(13)); the introduction of Gibbs’s ensembles in quantum theory is due to von
Neumann. The phase-space distribution corresponding to a Gibbs’s ensemble may be
found in accordance with the method of § 3, by calculating the mean of ¢*Zo(rore+fotd
from (12-1) (r,,s, being the dynamical variables characterizing the assembly), and
taking its Fourier inverse. For the Cartesian coordinates and momenta of an assembly
of N degrees of freedom

M(rs,6,) = ZF, f w f YA(q,) eFrate ety (g ) dg, ... dgy, (122)
n
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and the phase-space distribution p is 8 sum of diagonal eigenfunctions p,, (see §§ 3 and 4)
P(Be:95) = ZPul Do 0o) B (12-3)
Pl Do 9,) = (2m )_NJ‘(};’ )J‘ﬁ(%‘ —3fir,) e~tBaTabo wn(qa +¥fir,)dry ... d'rN
= htN ok(fif) £48%)3p0 900 [?/,:‘I«(QG) ¢n(pa) g‘tzaﬁ’aqo/n], (]_2-4)

where ¥,,(q,), $n(p,) are the eigenfunctions in ¢,, p, representations respectively.

Since each term p,, in the right-hand side of (12-3) is a solution of the phase-space
equation of the motion (7-8), the transformation with time of p will be governed by the
game equation, which now appears as a generalization of Liouville’s theorem for the
probability densities in phase-space of statistical assemblies. Introducing the phase-
§pace differential operator of a Poisson bracket

9 o o0H op ©0H Bp]
a, a—tHp = 3 o= 2 12
{Bp, qu} p=2 [Bpaaq, 04,0, (12:3)
we have symbolically %%%—%sin%{%, 5—-} Hp=0. (12-8)

It has been held that the existence of Gibbs’s ensembles ‘is rather surprising in view
of the fact that phase-space has no meaning in quantum mechanics’ (Dirac(13)).
This apparent paradox is removed by the statistical approach to quantum theory,
which leads, as seen above, to an interpretation of ensembles closely analogous to that
of classical statistical mechanics.

13. PHASE-SPACE DISTRIBUTIONS OF ONE MEMBER OF A STATISTICAL ASSEMBLY
We consider now an assembly of similar particles in weak interaction. For a given
energy K, of the whole assembly, we find complexions o, with a, particles of energy

k 1
€, @, Of energy e,, ..., a;, of energy ¢, N = Y a;, and B, = ¥, a,¢,. Assume at first that
‘ 1 1
the energy eigenstates of individual particles are non-degenerate. The eigenfunctions
corresponding to o, are
M.B. case: Yoy = Ur(20) %1(d3) - - Uy (@) alZayer) - Uil davr)s

B'E' case: wan = (N')—& % P[ul(QI) ul(Q2) ulc(QN)]: (131)

F.D. case: Yo = (V1) % + Pluy(qy) uy(ga) - urlgn)]s

where M.B. refers to a Maxwell-Boltzmann, B.E. to a Bose-Einstein (symmetrical),
and F.D. to a Fermi-Dirac (antisymmetrical), assembly, P denotes all the permutations
of the g,, and the + or — signs in the F.D. case refer to even or odd permutations. The
numbers of distinct wave functions for each energy B, are

M.B. case: G L ]

@ g la,l...a)’

B.E. case: C,, =1 forall a,, (18-2)
. _[1 whenalla, =0 or 1,]
F.D. case: G, = {0 if any a;> 1.

PSP 45, X 8
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The phase-space distribution p(p,, ¢,) and eigenfunctions p,, (9, g,) for the assembly
are obtained by substituting from (18-1) in (12-3), (12-4). It is easily seen that in the
M.B. case p,,, is a product of diagonal eigenfunctions f,;(p, q) of the individual particles
only, while in the B.E. and F.D. cases, non-diagonal eigenfunctions ocour t0o.

The phase-space distribution for one particle is obtained by integrating over the
coordinates and momenta of the remaining particles

f(p1:9,) =J‘2(1-V-_'_1) fP(Pm 9,) 3P, dg,dp,dgs ... dpadgy. (13:3)

Owing to this integration, all terms in Pa, involving non-diagonal eigenfunction cancel,

because f fudpdq = 0y, Hence in all three cases f(p;, ¢;) appears as a sum of diagonal

fpu i) = %nifii(pl: 0)- (13-4)

It is easily shown that the n, are simply the average frequencies of the occupation
numbers @, of (13-1). Introducing a canonical ensemble, where the P, of (12-3) are
proportional to e~Zn/kT we obtain

eigenfunctions

B= 3 %C’Me-‘l’?’nﬂcl’ Y G, e~BulkT, (13-5)
T, Oy T, &y

By substituting from (13-2) for the C, , the n; can be calculated by the method of
‘sums-over-states’ (Schrédinger (14)), leading to the well-known expressions
_ 1
T (B e~y
M.B. case: y=0; B.E.case: y=1; F.D.case: y=-—1, (13-7)

which can be substituted in (13-4) to give an explicit expression for the phase-space
distribution of one member of an assembly. As usual in equilibrium theory, all results
are independent of the type of ensemble provided that the dispersion of the total
energy is sufficiently small.

The effect of degeneracy of the individual energy eigenstates is to introduce non-
diagonal terms in (13-4). As a result, the n, must be multiplied by the corresponding
order of degeneracy w;, while the f,; must each be replaced by

'n.t (13' 6)

f_-'i't(pl: QI) = ’L_ll)‘ Zf'ti, kl(pb Q1): (13'8)
ik, 1

where the indices %, [ refer to the degenerate phase-space eigenfunctions at the ith
level, supposed orthogonal.

The foregoing may be used to justify the introduction of ensembles in guantum
theory. If we think of an ensemble as an assembly of similar assemblies, then the dis-
tribution of one assembly will have the diagonal expansion (12-3) for the same reason
that the distribution of one particle in an assembly has the diagonal expansion (13-4),
even if the ensemble is in & pure state. If the ensemble consists of an infinite number of
distinguishable assemblies, then the coefficients P, of the expansion must be M.B.
factors e~En/kT (F being now the energy of one whole assembly) and we thus have &
canonical engemble.
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We may compare averaging over an ensemble to averaging over time. If an assembly
is in a pure state, non-diagonal terms in the expansion of its distribution function

p(pa': 9os t) = _Eka’fakpik(pw Qa') e't(Ei—Ek)t/ﬁ (13'9)
Ty

cancel in a time average, leaving a diagonal expansion similar to (12-3). This is analogous
to the ergodic principle of classical theory.

14. JOINT PHASE-SPACE DISTRIBUTION FOR TWO MEMBERS OF AN ASSEMBLY

The distribution function for two particles is obtained by integrating p over the
goordinates and momenta of the remaining particles.

f(pll QI’ P2s QE) = fZ(N— 2)fp(p¢: qff) d@aan e dPNdQN' (14:'1)

In the M.B. case, the integration of each eigenfunction p,, yields only products of
diagonal eigenfunctions of the form fi;(91,qy) fyx(P2 ¢,)- In the other two cases, it is
seen that if 4k, there will be in addition non-diagonal terms (obtained by permuting
the two particles) fii( Dy, ¢1) fus( P2, ¢s), preceded by a + sign in the B.E. case, a — sign
in the F.D. case. Other non-diagonal terms in p,, cancel by integration as in the case
of a single particle. Hence we can write for all three cases

(P19 Do 02) = Fu’cnikfﬁ(?n 1) Jir Doy 92)+'}’i§k’ﬂﬂc Jul 1 01) fri( P2s 22),  (14:2)

where  has the same meaning as in (13-7). The coefficients of this expansion are easily
found to be for a canonical ensemble

na= 3 gt Cant T | 3 O e BT (iR
N, an N, oy
(14-3)

afa;—1) 4 _ / -
0 e EnlleT 0 EnlkT
=2 v % u2 Von®

Carrying out the summations in (14-3) by the ‘sum-over-states’ method, we find that
the non-diagonal coefficients (i k) are
Ny = NN, (14-4)
where the n, are the average frequencies of the a,, as given in (13-6), while the diagonal
coefficients are
M.B. cage: ny; =nj, B.E. case: ny, = 2nf, F.D.ocase: n;=0.% (14-5)

The last (F.D. case) is of course a result of the exclusion principle. Substituting in
(14:2) we have

f(P1, 015 P2: 92) = izl;ninkftt(m, 1) Sir P2: 92) + ')’i% N for D1 01) Ji( Doy @)y (14-6)
which may be written, after comparison with (13-4),

F(21, 61,02 0) = F(01, 1) F(P2s 42) + JﬁiZk [fie( D1 83) Fial D2s T0) + i D1 §1) Fure( Pas 22)]-
' (14-7)

t Strictly speaking, the right-hand sides of (14-4) and (14-5) should be multiplied by a
normalizing factor (147 2ing).
1

8-2
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We see thus that symmetry (or antisymmetry) conditions introduce a probability
dependence between any two particles in B.E. (or F.D.) assemblies even in the absence of
any energy wnteraction. For example the coordinates and momenta of the two particles
will be correlated, with covariance

Ma12s) = $ide—T1dn = ¥ St | Que [,
’ (14-8)

(P1P2) = D1P2 "1—0—11-7; = ')’F;c”tnk, | B |2

where @),,, P, are the matrices of the individual q’s and p’s,

O~ [ [etustr.00t0d0, Puy= [[ntustr, 0000

It is this dependence which gives rise to the ‘exchange energy’ between the particles
when they interact.

15. LIMITATIONS OF THE STATISTICAL APPROACH TO QUANTUM THEORY

The results obtained so far seem to offer a fairly complete scheme for treating quantum
mechanics as a form of statistical dynamies. It is important now to return to the
difficulties mentioned at the beginning of this paper, and discuss the limitations of
this approach.

First, we notice that phase-space eigenfunctions must generally take negative as
well as positive values, since they are orthogonal. Only one eigenfunction (generally
the ground state one) may possibly be non-negative for all values of the dynamical
variables, except for singular eigenfunctions involving delta functions, such as the
momenta eigenfunctions (4-13). Hence, on taking for example Cartesian coordinates
and momenta p, q as the basic system, the phase-space distribution in the nth energy
eigenstate formed according to the method of § 3 would be the diagonal eigenfunction,
Snn(psq), which can be negative, and is therefore not a true probability. This is not
really surprising, because we hayve seen in § 9 that the dynamical equations are those of
a Markoff process. The existence of eigenfunction solutions for the fundamental equa-
tions (9-8), (9-9) of Markoff processes is well known (see Hostinsky (11)), and it is also
known, that these eigenfunctions are not generally probabilities by themselves. Pro-
bability distributions are expressed as non-negative linear combinations of these
eigenfunctions.

In the language of quantum theory, we may say that true probability distrtbutions
of any given set of non-commuting variables do not exist for every state; the physical inter-
pretation would be that where the distribution, as caleculated by the method of § 3, can
take negative values, it is not an observable quantity. This is a restatement of the
necessity, already discussed in § 2, for postulating the existence of different phase-space
distributions according to the basic set of dynamical variables, Take, for example,
a system composed of one proton and one electron. The distribution F(p,q) corre-
sponding to the ¥(g) of a Gaussian wave-packet is positive for all p and ¢, and is hence
an observable quantity., On the other hand, thers would be no observable (p,q)
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distributions for the energy eigenstates of a hydrogen atom, though an observable
distribution may exist for some other set of variables.

It is usually accepted that a dynamical variable G is exactly equal to its eigenvalue
g, When the system is in the corresponding eigenstate. This means that the operator
W corresponding to the function W(@) should be equal to the function W of the
operator G, W = W(G), since if @ is exactly equal to g,, the mean of Wis W = W(g,,),

and hOnCS 7 _ (o W) = (W, WIG) ) = (s W(5a) U) = W50, (16-1)

Now it is easily seen (Appendix 5) that according to the theory of functions of § 5 this
condition is fulfilled only when G is a function of some linear combination of the basic
variables 7, s: G(ar +bs). This again is connected with the necessity for phase-space
distributions adapted to the experimental situation; if the latter involves observation
of @, then the distributions must be set up for some set of variables », s such that
G = Q(ar+bs).

In order for the scheme to be consistent, it should be possible to prove that if a state
 admits a non-negative phase-space distribution F at the time ¢ = 0, then F will be
non-negative at any time ¢. This is easily seen for isolated systems possessing at least
one cyclic coordinate §. Suppose that § and its conjugate g are obtained by a canonical
transformation from the original system ¢;, p,, and let @,, F; be the other (transformed)
coordinates and momenta, H(g, 6, F;, @,) the transformed Hamiltonian. Then

oH ol
36 = 0, T = constant = w. (15-2)
The transformed equation of the motion (7-8) can be written
oF ©oF 2. #ff0o 0
—+wﬁ+%sm {51"1 aQi}HF 0. (15-3)

Separating the variables, we have
F(g.6, F, Qu;'t) = K(0,0) F(g9, Py, @),

(agz +w 36121) = 2t4 (4 constant), (15-4)
F, = etut+0lo),
Comparing with the expansion of F in energy eigenfunctions, we see that it must be
ofthe form  P(g,6,F, Qi; 1) = 30} 0 Quu(g, By Qo) A BB, (15:5)
ik

Hengce, if F>0 for all § at ¢t = 0, it must be non-negative for all ¢, This proof was
suggested to the author by Prof. M. S. Bartlett.

Finally, we may discuss the meaning in the present theory of observables having no
classical analogue. §§2-6 on quantum kinematics are framed so as to apply to such
observables as well as to those having a classical analogue. The phase-space distribu-
tions represent for both types the joint distributions of eigenvalues for non-commuting
sets, and are subject to the same restrictions. The quantum equations of motion in
Phage-space, on the other hand, were expressed only for Cartesian coordinates and
momenta, so as to bring out the relationship with the theory of general stochastic
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processes, It is clear, however, that they can be extended to general quantum observ-
ables, say r and s. If F(r, s,t) is their joint distribution, then asin §7, 9F /0t is obtained
by Fourier inversion of oM i

5= (500 E), (166)

where M = ¢irr+99),

16, PRAOTIOAL APPLICATIONS OF THE THEORY

The foregoing restrictions are necessary as long as we require probabilifies in phase-
space. They may be relaxed in practical applications of the theory, where we introduce
phase-space distributions as aids to calculation, and where the observable quantities
we wish to calculate are necessarily non-negative, independently of whether the phase-
space distribution takes negative values or not. It isnot difficult to see that the phase-
space distributions and eigenfunctions obtained by the rules of §§ 3 and 4, though not
necessarily non-negative, obey the other fundamental rules of probability theory,
i.e. the addition and multiplication laws. Bartlett (15) has discussed the introduction
of such ‘negative probabilities’ as aids to calculation, and hag shown that they can
be manipulated according to the rules of the caloulus of probabilities (with suitable
precautions) provided we combine thern in the end to give true (non-negative) pro-
babilities. He remarks that ‘ where negative probabilities have appeared spontaneously
in quantum theory, it is due to the mathematical segregation of systems or states
which physically only exist in combination’.

Now this relaxation will be possible in practical applications, because the phase-
space distributions contain more information than is generally required for com-
parison with observations. For example, if we wish to calculate the way the distribution
in space p(q;t) of a wave-packet varies with time, we may use the method of §10,

because p(g;t) = fF(p, g; t)dp = y(q;t) Y*(¢; t) wil never be negative, evenif F'(p, q; 1)

can be negative. Similarly, transition probabilities caleculated by the method outlined
in the same paragraph will always be non-negative, whether F takes negative values
or not. Finally, we may use the methods of §§12-14 to calculate the phase-space
distributions of members of an assembly even if the phase-space distribution for the
whole agsembly can be negative.

We conclude that in applications of the theory, we need not be concerned whether
the phase-space distributions are true probabilities, provided that the final results,
expressed either as linear combinations of these distributions or as integrals over part
of their range, are necessarily true, non-negative probabilities.

17. UNIQUENESS OF THE THEORY AND POSSIBILITIES
OF EXPERIMENTAL VERIFICATION

The statistical approach to quantum theory involves the introduction of an addi-
tional postulate on the form of the phase-space distribution, which is equivalent to
& theory of functions of non-commuting observables. The choice of this postulate is
not unique. Dirac(16) has given a theory of functions of non-commuting observables
which differs from the one obtained in §5 of this paper; it has the advantage of being
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independent of the basic set of variables, but, as might be expected from the foregoing
disoussion, it leads to complex quantities for the phase-space distributions which can
never be interpreted as probabilities.{

It is natural to agk therefore whether any experimental evidence is obtainable on
this subject. In so far as observable results caloulated by such theories are equivalent
to those obtained by orthodox methods, e.g. transition probabilities, or distributions
of coordinates only, this is obviously impossible. However, though the simultaneous
measurement of coordinates and momenta is not possible for single particles, there is
some hope that experiments on large number of particles might be devised to verify
the phase-space distributions predicted by the theory. Alternatively, one might
hope to verify the corresponding theory of functions of non-commuting observables
if experimental evidence became available on some Hamiltonian involving products
of ¢ and p.

APPENDICES
Appendix 1. Space-conditional averages of the momenta and the uncertainty relations

The space-conditional moments p=“1 are the means of p™ when ¢ is given, They may
be obtained either from expression (4-14) for F(p,q)

plg)p™ = f:p”F(p q)dp

f ”p"¢* 2")p(2" ( )e“‘” 2V dpdp’ dp”
- [[or90 (E5E) aroriapap? |
- &) (=) @] A1)

where p(g) = f F(p,q)dp = ¥(q)¥*(q), or from the characteristic function M (7 | q) of
p conditional in ¢ (see Bartlett (17)) which is seen, from (3-7), to be

M(r{q) = %fF(P, q) €77 dp = Y¥(q—}n) Ylq+ Ty Ha) ¥g) (AL-2)

On writing Plg) = pi(g) eSO (A1-3)
the logarithm of M(7 | ¢) or ‘ cumulant’ function (Kendall (18))

(| @) = log M(r| @) = }log plg-+ ¥ir) pl(g—Hlir)—1og p(g) + 5 [8(g + 1) ~ S(g — ¥#7)]

(A1-4)

leads to a simple expression for the ‘oumulants’ %,(q) (coefficients of (¢7)*/n! in the
Taylor expansion of K)

) = ()" (2)" 50, R0 = (5) (5) lowe0 a1

+ Note added in proof. Reference should also be made to & recent paper by Feynman (26)
giving an alternative approach.

t The double bar = denotes a conditional moment, while a single bar — denotes a mean over
the distribution of both » and g.
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The X, bear simple relations to the moments ?‘ (Kendall (18)). In particular, the
first moment by both methods is
- = 28
K1) = p(9) = 3’
leading to the interpretation of the argument of the wave-function y(g) as the potential
8(q) of the space-conditional mean 7(g). The conditional mean-square deviation ist

= RRo21
Ralg) = o1 = PP~ B) =~

We note also that the asymmetry of a distribution depends only on its odd cumulants;
hence the asymmetry of the conditional distribution of p depends entirely on S(g).

Formulae (A 1-6) and (A 1-7) lead directly to Heisenberg’s inequality for the mean-
square deviations of p and ¢. Let a, £ be any two random variables with zero means.
We have the well-known Schwarz inequality

|(@28%)| = 0,02 [af]. (A1-8)

Now take o = %(g), where we suppose 7 to become random when we allow g to vary;
take also 8 = ¢. Then from (A 1-8) above, and assuming (as can be done without loss
of generality) that p = g = 0, we obtain

(A1-6)

(A 1-7)

o@)> |[dBola)ag - (a19)
— dlogp
Take now o =0dlogpfdg, &= e pdq =0,
— dlog p\*? 9%logp
o? = f("a_q") pdq = — ra — 5 —pdq = ﬁzfa'plapdq’

_roal
g = fw%pdq = -1

Hence, from (A 1-8), agfaglquq > 2. (A 1-10)

Since o2 =f[a§lq+(§)2]pdq, (A1-11)
the sum of the two inequalities (A 1-9) and (A 1-10) gives Heisenberg’s inequality

002> (pg)*+ 42, (A1-12)

This derivation of Heisenberg’s inequality was pointed out to the author by Prof.
M. S. Bartlett.

t The fact that o}, can be negative a.ccordmg to (A 1-7) results from the possibility of the
formal expression for F( p, q) being negative in certain states, The restrictions thus imposed on
the interpretetion of F(p, g} 88 & probability are discussed in § 15.
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Appendix 2. Orthogonality and completeness of the phase-space
eigenfunctions for canonically conjugate variables

The orthogonality relations of the phase-space eigenfunctions for canonically con-
jugate variables can be seen quite simply. We have, from (4-11),

f fil 2, 9) [t 2, q) dpdyg
= on [[[[utta—#ryula + ¥ir) uelg— i a9 e aran'dpdg
= 12 [0 @) o) uate) i) ddy = bbb (A211)
(the gecond line following from the change of variables » = ¢ — 4fir, y = ¢+ ##7), and
[[rutz.0y3pdg = m | [uta-43ryuslg+ fir Yo drapag
= (@) wale) dg = 8. (A2-2)

The completeness relations follow from the corresponding relation for the u,(g)

Efzk(l’ q) fzk(P q')
(2")"2” 5 (g — F57) wlq’ — ) g+ HT) g+ Hr) D

= <2")"2f f 8[(q—q) + ¥hlr~)] 8l — ¢') — ¥lr —1")] €i'¥' 7P dr dr’

=h18g—q) 8(p—p"), (A2:3)
S/ a) = @) [ Supg~ i) ulg+ i o

= (@2m) f Sr)e—® dr = h-L. (A2-4)

Appendix 3. Operaiors corresponding to functions of canonically conjugate variables
The proof of (5-5) follows from expression (3-10) for the phase-space distribution

el - [Jer. 0700
= h—%ﬂa( p, q) {0 [YH(q) p(p) €U} dpdg
e f f (k032030 G p, g)} Yr(q) $(p) €9 dpdg
- f Yr(g) {e9%om%a Go(q, )} (a) dg

= f?/f*(en Gy(g)dg, (A3:1)
and hence G = b®#orda G (q, p). (A3-2)
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The operator corresponding to a function
&(2,9) = T (@) 7" (A3:3)

is obtained very simply from (A 1-1). We have

Q) P = fﬂn(q)prﬁp@) dg

- @) Jmo o) Vv @)] 4

f ¥*(4) { (Z) P4n(@) p"""} ¥(9)dq (A34)
and hence G= §0 }3 ( )p",u (q)pm*, (A.3:5)

This could also be derived from (A 8:2) (¢f. McCoy (10)).

Appendix 4. Transport equations and the Schrddinger equation
The ‘transport’ equation of any quantity g(p,q,t) is defined as the equation
governing the time variation of the mean (g, t) at every point ¢ (space-conditional
mean). It is obtained from (7-7) or (7-8) by integrating over the momenta p and making
use of the expressions in Appendix 1 for the conditional moments of p. In the case of
a particle of mass m, charge e in an electromagnetic field, whose classical Hamiltonianis

1 2 .
Hpug) = 53114+ Vaet) (6=12.3) (A1)

(4;(qx,t) being the vector, V(g;,t) the scalar, potentials) integration of (7-8) and sub-
stitution of p; = 9.5/9g; from (A 1-6) lead to the continuity equation
ap ( BS)
+ = 0’ Ad?
Z a% aq't ( )

where p(g,) is the distribution function of the coordinates. Multiplying (7-8) by 25
and integrating gives the transport equation for 7,
D, 2 ( oH\ 0H
5(P0 + S (oage ) +o5 = 0. (Ae)

Substituting in the above from (A 1-6) and (A 1+7), and combining with (A 4-2), we find

0 (08
— 7= = .4
aqk{at+ smpza } (k=1,2,3). (A 4-4)
Hence the quantum-mechanical equlvalent of the classical Hamilton-Jacobi equation
08 = .
= 5
e = +H = ,0 "y 0. (A 4:5)

Substituting p = yYy* and S = #/2ilog (Y /¢*) and adding and subtraotmg (A 4:2)and
(A 45) we find the Schrodmger equation of & charged particle in the field

2 2 D
— (%;—%Ai) ¢+V¢=ma—f. (A46)
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Appendix 5. Operators corresponding to functions of linear
combinations of the basic variables

According to (5-2) and (5-3), the operator corresponding to G(ar-+bs), where
and & are constants, is

G- f f 49 g 4 f f G(ar + bs) e=irr+09) dy ds. (A51)
Changing to the variables
T 0 r 0
g—a7‘+b8, ’)7=a’)’——b8, A=%+-2—5, IU,='27"“~—23, (.A.5'2)
we find G = f f gUA+par+A—pbal J ) i J- f G(g) e—HAE+uy] dg d17
= fgtz\(ar-}-bs)d}\f@(ﬁ) e~1Ag dt = G(ar +bs). (A 5-3)

I should like to acknowledge my indebtedness to Profs. P. A. M. Dirac, H. Jeffreys
and the late R. H. Fowler for their criticisms, suggestions and encouragement in
carrying out this work, and my gratitude to Prof. M. S. Bartlett for many invalnable
discussions and the communication of his various results referred to in the text.
M. J. Bass and Dr H. J. Groenewold have studied the same subject independently
(cf. Bass (19) (20), Groenewold (21)), and I have benefited from discussions and corre-
spondence with them. The papers of Powell (22), Stueckelberg (23). Dedebant (24) and
Reichenbach’s book (25) also have a bearing on the questions discussed in the present
paper (I am indebted to Prof. Bartlett for these lagt references).

SUMMARY

An attempt is made to interpret quantum mechanics as a statistical theory, or more
exactly as a form of non-deterministic statistical dynamics. The paper falls into three
parts. In the first, the distribution functions of the complete set of dynamical variables
specifying a mechanical system (phase-space distributions), which are fundamental
in any form of statistical dynamics, are expressed in terms of the wave vectors of
quantum theory. This is shown to be equivalent to specifying a theory of functions of
non-commuting operators, and may hence be considered as an interpretation of
quantum kinematics. In the second part, the laws governing the transformation with
time of these phase-space distributions are derived from the equations of motion of
quantum dynamics and found to be of the required form for a dynamical stochastic
process. It is shown that these phase-space transformation equations can be used as
an alternative to the Schrédinger equation in the solution of quantum mechanical
problems, such as the evolution with time of wave packets, collision problems and the
calculation of transition probabilities in perturbed systems; an approximation method
isderived for this purpose. The third part, quantum statistics, deals with the phase-space
distribution of members of large assemblies, with a view to applications of quantum
mechanics to kinetic theories of matter. Finally, the limitations of the theory, its
uniqueness and the possibilities of experimental verification are discussed.
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THE EXACT TRANSITION PROBABILITIES OF QUANTUM-
MECHANICAL OSCILLATORS CALCULATED BY THE
PHASE-SPACE METHOD

By M. 8. BARTLETT awnp J. E. MOYAL
Received 14 September 1948

1, INTRODUCTION

The calcalation by the usual perturbation methods of transition probabilities between
the unperturbed states of a quantum-mechanical system yields approximate results,
valid only for small perturbations. The object of this paper is to calculate the exact
transition probabilities between the unperturbed states of quantum oscillators, valid
for large as well as small perturbations, by using the “phase-space’ method developed
by one of the authors (Moyal (1), referred to henceforth as (I)).

We give first the main results of (I) required in this paper. The probability Qistribu-
tion in phase-space of a system in a state described by the wave-function ¥(g) in
g-space isT

1 i .
F(3,9) = 5= [¥Ha—§im) oo g+ im) (1
Corresponding to the expansion of ¥(g; t) in terms of energy eigenfunctions ,,(q)
(g5 1) = T agu,(g) e %, (1-2)
n
we have an expansion for F(p,q;t)
F(p,q; 1) = X 0§, fun(p, q) i (1-3)
k,n
in terms of the energy phase-space eigenfunctions
1, ) . "
Jen®, ) = 5= |uiclg — Him) 772w, (q + Hir) dir. (1-4)

These functions form a complete orthogonal system in phase-space which is also ‘self- |

orthogonal’ and hermitian with respect to the indices k, n, i.e.

[[uttntvds =100, [[findpin =t fru=fl (9
Furthermore, the matrix Gy, corresponding to an ordinary function G(p,q) is given by
Gren =f (2, 9) finlp, @) dpdy. (1-6)

The transformation with time of F(p,q; t) corresponding to the quantum equations

of the motion is given symbolically by

0 2. (k{0 @ 0 0

2 ) = ginl o e e e Piw. g .
5L (P ait) =55 {2(apFagH BPHBQF)}H@,Q) (9,4 %), (1-7)

+ When no limits are specified, all integrals are to be taken as from —co to 4o,
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where 0/0py, 0/0qg operate only on the classical Hamiltonian H(p,q) of the system;
0/0ps, 0/0gm on F(p,q,t). This is seen to be an extension of Liouville’s theorem

oF OHOF OHOF
%W
and reduces to the latter in the correspondence principle limit (2 0) and for systemg
whose Hamiltonian is a polynomial of the 2nd degree or less in p and g. For such systemg
(and they include the free and the uniformly accelerated particle, and the oscillator)
the transformation with time of F(p,q;t) is of the ‘deterministic’ type of classical
kinetic theory, each element of the distribution transforming in phase-space according
to the laws of classical mechanics. A direct verification of the deterministic character
of these systems in given in Appendix 1 and in § 2.}
Equation (1-7) specifies the infinitesimal transformation with time of F(p,q;1).
The transformation over a finite interval ¢ —#, can be given in terms of a ‘transforma-
tion function’ K(p,q| 2o, 903 t—1);

(18)

F(p,q;t) = JJK(ZJ:Q ] Por 905 1—19) F(00: Q03 £t — 1) dPodq,. (1-9)

K is interpreted as the probability of p, ¢ at ¢ conditional in p,, g, at 4, and may be
expressed either in terms of the phase-space eigenfunctions by an expansion similar
to (1-3)
K(2:q] po> Q03 t=t) = b 32 fun Por 1) fien (2, ) PRI, (110)
, T

or in terms of the wave transformation-function
(g I Qo3 t—1to) = 2y (qo) Uns(q) e " EnttolE, (1-11)
n

by an integral similar to (1-1)

K(p,q| 2o qo; t— 1) = 5;;? f f;/f*(q — Hir | gy — $liry) €XTPe=TD) Yr(q - i | qo + iimo) drdimy.
(1-12)

The phase-space theory of quantum mechanics may be applied to caleulate the
transition probabilities of a perturbed system. If X is known for the perturbed Hamil-
tonian H, and we wish to caloulate the transition probabilities from the kzth unperturbed
state in an interval ¢, we take as initial distribution the kth diagonal phase-space eigen-
function corresponding to the unperturbed Hamiltonian H®: Fy(p,,q,) =) (20> To)-
The transformed distribution after an interval ¢ is then from (1-9) and (1-3)

Folp 03 1) = f K(p,q] Por o3 1) [P0 20) dPody = 3 af u fiz(, 9): (113)
The transition probability from state k to state n is then given exactly by}

Punt®) = 30 2,(0) = 1 [ o003 0/, dp . (114)

+ Cf., in this connexion, Coulson and Rushbrooke (7). ) ]
1 It may be shown that the transition probabilities obtained in this way are in fact 1‘dant10
with those of ordinary quantum theory; the proof of this statement is given in Appendix 2.
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In the particular case of deterministic systems the transformation function K must
reduce to a product of delta-functions expressing the contact transformation of
classical mechanics (this is verified in § 2 for the harmonic oscillator). The distribution
at ¢ follows simply by substituting the classical solutions in the initial distribution:

Fo2,9:t) = fi o( D, ¢, £), 20(2, 4, )]

2. PHASE-SPACE THEORY OF THE HARMONIC OSCILLATOR

We now develop the phase-space theory of the one-dimensional oscillator of mass m,
angular frequency w, coordinate @ and momentum P. In terms of the reduced variables
q = (mwffi)t @, p = (mwh)~t P, its Hamiltonian is

H = }(Pjm +mw?Q?) = §(p*+ ¢) Aw. (2:1)
The energy eigenfunctions in p- and ¢-space are u,,(q), u,(p), where

linlg) = (— 1) (2rrin))+ gie (—8%) () = (el te R H(g),  (22)

1 )
un(p) = s [n@) 1. (29)
The phase-space energy eigenfunctions are then, from (1-4),}

17, )
Jon 2, @) = o= |unlg—37) e P u, (g + dr)dr
2m

= (- 1)n+lr, (27T)—1 (2t k-2 f et pHHa—brP iR (_a__)k(e—(arh)’) (—a_)'n (e—(fla+-{r1)2) dr
0qy oy

= (= L)tk (277)=1 (2ntegrp | 1)1 (i)k (_a—)n et-11—g} f e=VTp—iT =) 1

91/ \ga
= (= s ety (2 () eseastn), (g =0 =)
or, on introducing the variables z = ¢+1p, 2* = ¢ —ip
Fonltn2%) = (= JB)H (mim Iy = (aj )’“ (%) (-2, (24)

A more convenient expression is obtained by substituting the variables

w = 2z = 2Pt +@?) = 4H[liw, 0 = tan~!(p[q).
The phase-space eigenfunctions then break up into the products of an associated
Laguerre function of w and a trigonometric function of @

k
Fien(w, 0) dwdf = 3(~ 1)F (fe! nt)~kdtk—m) b (52—0) (w™ =) duw (27r)~1 k=m0 4O
= J(— 1Y% (Jo! /! )} wrile=m) =4 [2~K(3p) duw (2m)~* &1 8. (2:5)
The diagonal eigenfunctions are simple Laguerre functions
n
Frnlw, 0) dwdf = 3(—1)" (nl)"*et® (8%)) (we~) dwd0[2m

= }(—=1)re~t L (w)dwdb|2m. (2-6)

t An expression for these eigenfunctions has been found independently by Dr H. I. Groene-
wold (2).,
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The determinism of the oscillator may be verified by calculating the phase-space
transformation function over a finite interval of time £, on using equation (1-12). The
wave transformation function over this interval is given by the well-known Mehler
expansion for Hermite polynomiais (3)

Yl(g] g0 t) = %: Un (o) Un (g) e+t
= (274 sin wt)* exp {4(2 sin wt)~ [(¢% + ¢3) coswt — 2gg,]}- (27
The phase-space transformation function is then

K(p,q] 10,903 t)
= (472 sinwt)? f f exp [i{Typo— TP + (sinwt)~* [(7q + 74 q,) coswt — g, — Toq1}] drdr,

= (472 sina)t)'lffexp {i(sinwt) [7(g coswt — p sinwt ~g,)
+To(go cOSwt + Py sinwi— g)}} drdr,
= sinwtd(q coswt — p sinwt — q,) 6(g, coswi + pysinwt—gq), (2-8)
a product of delta functions expressing the contact transformation of classical mechanics
for the oscillator. The expansion (1-10) of X in terms of the phase-space eigenfunctions
gives the following interesting formula for the associated Laguerre functions
(3277) -1 2 ( k! /'IZ') wo—i(k—n) e—& moL;CL—k(wo) oy~ Mle—n) e—l_ch%.—Ic(,w) 61:(n—k) (0 —0y—wit)
ey 1t
= O(w—wy) 8(0—0y—wt+2rm), (2:)
where the §-functions are normalized over the ranges of w and 4, r being an integer
such that 0<8,+ wt— 2rm < 271,

In Appendix 3, the above results are applied to derive the equilibrium phase-space
distribution of members of a statistical assembly of oscillators.

3. TRANSITION PROBABILITIES OF A PERTURBED OSCILLATOR

We shall now apply the method outlined in §1 to calculate the exact transition pro-
babilities of a perturbed oscillator for a perturbing potential of the form ¥V = g&(t),
where &() is an arbitrary function of the time. On using equation (1-14), the transition
probability from state % to state n is given in terms of the variables w = 2(p®+4%) and
0 = tan—!{p/q) used in § 2 by

w (27
le(t) = Sﬂfo JO fkk('wo: 00) f;fn(ws 0) d'wo d@o, (31)
where w,, 6, are the initial values at ¢ = 0, w and 6 those at time ¢ obtained from the
classical solution for the perturbed oscillator
t
q = gy coswi+p, sinwt—a)f E(r)sinw(t—T1)dr,
0

t
P = pycoswt—q,coswt—w | &(7)cosw(t—7)dr.
0

Hence w = wy+ 2 (wyee)t cos (O — @) +a, (3-2)

!
where (Aa)t et = iwf &(r) et dr,
0
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It is easily seen that e = }fiwa is the non-fluctuating part of the work done by the
perturbing force, while ¢ is the phase change of the oscillator. We now substitute these
golutions in (3-1) and also introduce two auxiliary variables v, £ which we shall equate
to 1 after all the indicated integrations and differentiations have been carried out. This
yields & closed expression for the transition probability

— 1 Je+n 2m ) " o\ _
Panlt) k' 7“277. f f waw( ) (wg e7v*0) (‘1_0 (w™ e~tw) dw, d8,

(k_lii)l;:,n (37) (3@') Vk‘gnf f exp {wy(1—y—§)
+ (3 — &) [+ 2 (wy)* cos (G, — )]} dw, db,

= .(;:l_)_k;‘.:b ..a_ * .?_ n'ykgne(’}—'g)“ e—woly+é~1) T [2 w ) % g)] dw (fy = g — ]_)
Elnl \oy) \0& 0 0 0 ’

where Iy(z) is the modified zero-order Bessel function of the first kind (fy(x) = Jy(iz)).

The integration is easily carried out, for example, by substituting for Jy(z) its Taylor

expansion and integrating term by term, whence

it G (2 (2 pen] ) = o0

Carrying out the indicated differentiation on y*, £», one finds that

= -0 5 ()32 5 QIR o] 0524659

or symbolically : y=£=1)
Prnll) = (= 1)"+nLk( —%) L( ~5ag)(?7:§—_—1 exp [-oc %iﬁ)}) (y=¢= 5 i)
With the use of the expression for the Laguene polynommls generating function (3)
i——l_—exp [—i—] 2 Ly @)™, (3:5)

a ‘probability generating function’ (p.g.f.) may be calculated for the p
A7, 0) = 3 Py, O
k,n

=(_1“_+r)1(—11?)exl( 1+08'y) ( 1+78§)

—exp(~aZZBEDN gy
! e _i(l—f){fl+—y0) ( e )} 3.6
_meX1){ T 1—70 } ( )

The coefficient of 6% in the Taylor expansion of G(r,6) in powers of @ only, will be the
p.g.f. Gy(r) for transitions from the /th state; that of §%” in the expansion in powers
of both 6 and 7 will be py,(¢). Forn>k

1 e\ o & _e_)l‘m
Drn(t) = R (Za) ¢ ﬂgogo(ﬁw

(n—K) (i +v)! (—2)~
('V'(n 4+ vy (k—p—)! (n—lk+p+2v)!

). (3-7)
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Since, as is obvious from (3-3) or (3-4), the p,, satisfy the principle of detailed balance,
i.e. Ppn = Py, the probability of transitions to states n <k is simply obtained by inter-
changing the indices # and % in the right-hand side of (3-7).
The p.g.f. Gy(r) and the probabilities p,,,(t) for transitions from the ground state are
simply those of a Poisson distribution
1/{e\”
Gofr) = XD, ) = (L) e, (38
These exact results may now be compared with the approximate ones obtained by
the standard perturbation method. The Taylor expansion of the approximate expres-

sion for the p.g.f. 1
U PR Q:QM>] :
gives approximate values for the
€
le(t) = Bk,'n +/_ba [(k + 1) 6lc+1,n + ké\k—l, n— (2]‘: + 1) 6Ic,n] (3'10)

correct to the first power in ¢, whose expression is identical with the first approximation
of the perturbation method. Expression (3:7) shows that in general the probability of
& 2nth-pole transition for small ¢ is of the order of (¢/fiw)", i.e. only dipole transitions
have an appreciable probability. The perturbation method equates to 1 the exponential
factor exp {—e¢ffiw} in the exact expression (3:7). This procedure is justified only for
small €; as the perturbation energy increases, however, multipole transitions become pro-
gressivély more probable. In order to find the most probable ones from the ground state,
let us substitute the continuous variable z for » in (8-8)

Liel*
== —f — /ﬁ"‘)
Poz = 7 (ﬁw) e

Ao L { €N® _no € d
gao, zx—l(ﬁa—) it [1og(m>—c—z;(log:v!)].

The most probable transition is therefore to the state n given by

2 (logt)pmns = i) ~1og (ff0),

where the logarithmic derivative y(x) of the factorial function %! is an increasing
function of z (Jahnke-Emde (4)). For large z, ¥/(z) ~ logz, and hence nfiw = B, — By~¢-
Similar considerations apply to the general case: it will be seen from (3:7) that the mosb
probable transitions are those from states k to states n such that (n — k) fiw = B, — By~e
Hence the physically plausible result that for large perturbations the most probable
transitions will be those for which the change in energy is approzimately equal to the work
done by the perturbing forces.
APPENDIX

(1) Free particle and particle under constant force

The way in which the phase-space method may be used to solve wave-packet problem?
is easily exemplified in the deterministic cases of the free particle and the particle under
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constant force. In both these cases, the Schrddinger equation is most easily solved in
mpomentum space. We describe the particle at ¢ = 0 by a Gaussian wave-packet

Po( Do) = (2msf)~+ exp [ — p§/4s§] (A. 1)
orresponding to the minimum uncertainty ¢, s, = 4% on its position and momentum
(f. Kennard (5)), s, and o) being respectively the mean square deviations of p, and ¢,

and taking the origin at the mean of p, and g,. The corresponding phase-space dis-
tribution is by (1-1)

B30 ) = 5= | #5(0—4ir) i+ 487)

= (mh)™ exp [ — 4(p3/s3 +¢4/0?)). (A.1-2)
The solution is then obtained simply by substituting in (A. 1-2) the classical solutions

for p and ¢ in terms of p,, q,, {. In the case of the free particle, this gives for the dis-
tribution at ¢

F(p,q; t) = (wh) exp [ — }(p/5,)* - }(g)og —pt/moy)?]. (A.1:3)
1t is easily shown that this corresponds by (1-1) to the wave-function
B(p; £) = (2msf)~exp [ — (p/28,)* +ip®/2mii], (A.1-4)
which is the solution of the Schrédinger equation
Py o
2m* 4ot (A.1-5)

with @o(p,) as initial wave-function at ¢ = 0 (cf. Darwin (6)).
Similarly, for the particle under constant force mg we find for the same initial dis-
tribution Iy, q,)

1 1 — 2 — — %at2\2
Fing=gpee[5{(APE)  (HETE] o

which again corresponds to the solution

q) = o\t oy | {2 IME)? 3(__1)_%_@12 mg%)} .
P(p; 1) = (2msf) exp{ {( o +7lgn s T (A.1-7)

P2y mahog_ 1op :
Pt ap i ot (A.1-8)

of the Schrédinger equation
(2) Bquivalence between the transition probabilities calculated by the
phase-space method and those of standard quantwm theory

Tt is convenient in the calculations that follow to introduce Dirac’s notation:
(s, ¢,> for the coordinate eigenfunction corresponding to state s;, at time t,, (s, | gs»
for state s, at &, (g4 | g for the wave transition function from g; at #; t0 g atity, (s; | s,)
for the transition matrix from s, at £, to s, at t,; the corresponding transition pro-
bability in the standard theory is then |{s,|s,)|* The transition probability p,,,
ealeulated by the phase-space method, is from (1-18) and (1-14)

Doyey = f . -ff;‘;sz(pz, 02) K(Dg: 02 | D1 ©1) Fyon P1 €1) 902 A2 01 d4y. (A.2-1)
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Substituting from expressions (1-4) for f,(p,q) in terms of {s|g¢) and (1-12) for X in
terms of (g, | g,), we have

fi2 . )
Dsiey = Z?Tzf . :ﬂf(& | g1+ ¥imy) e~rma (g, — $iry | s dry
x ff(% + 370, | go + 10, e"O01—0229 (g, — 370, | ¢, — 370, A6, d0,
x f (83| go— $firy) eieP2 (g, + $T, | ) de} dpydq; dp.da,
= | [Coul ) o 2o oy x [ (<o 5o > ot o) i,

where the change of variables x; = g, + }fir;, 21 = ¢, — #fir;, ete., has been made. Hence

Pogn= I {8y I 897 IZ: (A.2-2)
i.e. the two expressions for the transition probabilities are formally equivalent.

(3) Phase-space distribution of @ member of u statistical assembly of oscillators
The equilibrium distribution of the coordinates and momenta of one member of &

statistical assembly of similar particles is expressed in I, p. 114, as a sum of diagonal
phase-space energy eigenfunctions relative to the individual particles

f(_’P, 9) =C %nkfkk(fp; Q): (A 3'1)

where C is a normalizing constant and the u,, = e~%/*1 in the case of & Maxwell-Boltz-
mann assembly. On substituting from (2-6) for an assembly of oscillators, this becomes

Flw,0) = (4m)= (1 — e TwlkT) 5 (— 1y g=bie=nMOT L, (1)

n
= (4m)~tanh (fw/2kT) exp { — 4[wtanh (Fw/2LT)]}, (A.32)
where the last line follows from (3:5). Transforming back from w and 6 to p and ¢, we
finally find a Gaussian distribution for the coordinates and momenta of a member of
an assembly of oscillators

f(2,9) = (2m)7 (fo| B) exp { - ${(* +¢°) (| B)]}, (A-33)
where # is the mean energy
E = }fiw coth (w|2kT) = fw(ehT — 1)1+ Hiw. (A.34)

We may note that the mean-square deviation of the energy calculated from the
above distribution is o = B? instead of the usual expression ¢} = B2~ (}fiw)?. This
follows from the fact that the phase-space theory of quantum mechanics yields different
distributions according to the basic system of variables chosen (see I, p. 100 for a fuller
discussion). If the energy is one of these variables, then it is quantized, with possible
values ¢, = (k+3%)#Aw, and its distribution is simaply

pleg) = 2 sinh (B |2k T) e 42, (A.35)
yielding the second value 0% = B2 —(3fiw)? for the m.s. deviation of the energy: I
p and ¢ are chosen as the basic system, then the energy distribution becomes continuots:
with a m.s. deviation of (3%iw)? for each of the energy eigenfunctions, leading thus t0
the first value % = E2.
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SUMMARY

The ‘phase-space’ method in quantum theory is used to derive exact expressions for
the transition probabilities of a perturbed oscillator. Comparison with the approximate
results obtained by perturbation methods shows that the latter must be multiplied
by an exponential factor exp (— ¢/fiw), where € is the non-fluctuating part of the work
done by the perturbing forces; as long as ¢ is small, exp (—e¢ffiw)~1 and only dipole
transitions have an appreciable probability. As the perturbation energy increases,
however, this is no longer true, and multipole transitions become progressively more
probable, the most probable ones being those for which the change in energy is approxi-
mately equal to the work done by the perturbing forces,
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The formulation of non-relativistic quantum mechanics in terms of ensemble in phase space is
established by clarifying the subsidiary conditions for the phase space ensemble to represent a pure
state, and thereby the equivalent correspondence between this formulation and the alternative for-
mulation in terms of quantum potential previously developed is exhibited.

§ L. Introduction and summary

The ordinary formulation of quantum mechanics, as established by the fusion of
Heisenberg’s matrix mechanics and Schrodinger’s wave mechanics, is certainly the most

*

fundamental and powerful one, having its own ° picture’ in a broad sense™ essentially non-

classical. Nevertheless we may consider another consistent formulation of quantum mechanics
with its associated picture, for instance, path integral formulation by Feynman”. Generally
such a new formulation and picture would reveal new aspects of physical and mathematical
construction of quantum mechanics, and might serve to suggest new clues to future progress
of quantum theory itself **, apart from its usefulness for practical applications to specified
class of problems.

From such viewpoint we have examined in detail a certain formulation of quantum
mechanics in previous papers”® (see §5 (a)): The method is based on the transforma-
tion of customary Schrddinger equation into simultaneous equations for the phase and amplitude
of the wave function, which are found to be of the form of Hamilton-Jacobi-like equation
o Euler’s equation of motion for velocity potential, and the equation of continuity.
According to this expression we have the representation of quantum mechanical motion in
terms of an ensemble of trajectories in configuration space subject to some additional force
(so-called ¢quantum force’), or equivalently in terms of an irrotational flow of perfect
fluid with peculiar internal stress (‘quantum stress’). We shall call this method the
method of the configuration space cnscinble (abbreviated as cs. en.).

Now the Schrédinger equation can be transformed into a form describable in classical

*) Extending “the meaning of the word  picture’ to include any way of looking at the fundamental
laws which makes their self-consistency obvious ”’, according to Dirac?.
**) In this paper, however, we shall not try any such suggestion, confined merely in the reformulation

of the present quantum theory.
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languages in still another way: That is, we can transform the Schrédinger equation into
Liouville-like equation for a distribution function in phase space which is produced as a
cettain fourier transform of a bilinear form of the wave function, leading to the picture
of certain Markoff-like process of an ensemble in phase space for quantum-mechanical motion.
This method, which we will refer to as the method of the plasc space cuscmdle (ab-
breviated as ps. en.), was initiated by Wigner® and later by Moyal”. The purpose of
the present paper is to develop this method into a consistent formulation of quantum
mechanics by establishing the subsidiary conditions for a ps. en. to represent a pure siate,
and also to prove thereby the equivalence of this formulation with the cs. en. formulation
formerly méntioned.

In the phase space formulation the knowledge involved in the phase of the original
wave function is reflected upon the momentum distribution in such a manner that the
phase space distribution function (abbreviated as ps. df.) implies the representation of a
state symmetrical in coordinates and momenta. But the manifold of the ps. df. covers
wider possibilities than that of the original wave functions. Now, according to our prescrip-
tion, a mixing of states corresponds to a suporposition with positive coefficients of relevant
distribution functions which as well satisfies the same Liouville-like equation, because the
latter is linear in the df. Accordingly a ps. df. in general would be the representative
of a mixed state, in so far as it satisfles certain ¢ positivity condition’. Thus in this
formulation of quantum mechanics it is an essential problem to obtain the subsidiary

conditions™’

that a ps. df. should particulatly correspond to a pure state. We explicitly
obtain these conditions, which must be of some non-linear relations (§ 4). This is made
tractable by first replacing the usual pure state condition for the density matrix (4.2) by
local relations (4.4). Transforming the latter we acquire the pure state conditions on
the ps. df., which consist of the condition of irrotationality of mean momentum field, (4.19),
and the condition (4.6) which we call the ‘ quantum condition>. The latter will further
be transformed into a series of relations between distribution moments in respect to momentum
components of successively higher ordets.

Now, in virtue of these pure state conditions, we can prove the equivalence and cor-
respondence between the cs. en. formulation and the ps. en. formulation (§5). For
instance, the quantum potential in the former may be looked upon as an apparent force
appearing as a result of ‘projecting’ the ps. en. onto the configuration space.

The cs. en. formulation and ps. en. formulation, though they are equivalent and
transmutable to each other, are of very different characters. The effect of quantum fluc-
tuations is represented with fluctuations of continuous trajectories® due to quantum potential
in the former, while in the latter with Martkoff-like transitions, the properties of which
we shall examine in detail (§3). The ps. en. seems to be one step superior to the
cs. en. in that it correctly yields quantum-mechanical expectation values as the mean values
over the ensemble for wider class of dynamical quantities, yet it must be emphasized that

*)  Moyal? unnoticed the presence of these conditions, while other authors have been unable to obtain
their expression.
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it cannot do so for a// hermitian quantities and that we must in return allow of s gative
probabilities (§ 2).

The ps. en. formulation is formally consistent within its limited range of applicability
and accompanied with the picture working along classical lines, but we cannot take the
picture too realistically, just as in the case of the cs. en. formulation¥. Instead, these
formulations provide concrete analyses as to the degree in whick the statistical propertics
of quantum mechanics can bc. understood along any statistical sclieme bascd on some
lidden variables.

The ps. df. is a 7cal quantity produced as a éilincar form of the wave function,
as is needed for the representation in terms of it to have classical pictures, but that would
just mean greater complications in mathematical treatments usually. It is well known that
the method of ps. df. is useful for the treatment of quantum statistical mechanics””. We
shall, however, show how this method of ps. en. can effectively be applied to pure state
problems for a few elementary examples (§6).

In the last section we consider the positivity condition and also express the pure state
condition in an alternative form.

§ 2. Phase space distributions and mean values

For simplicity, we shall confine ourselves to the simplest case of a single non-relativistic
particle without spin throughout*. A quantum-mechanical mixed state can be specified
by a density matrix™ p, or (ac|plac’)=p (%, %) in coordinate representation, which must

satisfy the conditions to be

hermitian : ploe, ') =p*(x', x), (2-1)
normalizable : Sp p={Zup(®, ®)dr=1, (2-2)
and positive definite : Sp (p 4)=0,

for any hermitian operator A. (2-3)%*

Conversely, any function p(ac, a’) satisfying these conditions can be expanded in a form

p (e, x) =lwubn () fu* ('),
with 'ZU,,_Z_ 0, Z wWwy=1, (2 '4)

where ¢,(2¢) and v, mean eigen-functions and eigen-values of p respectively, which fact
indicates that the p(ac, &) corresponds to a mixture of pure states of wave functions ¢/, ()
with respective weights 7v,,.

The density matrix p gives the quantum-mechanical expectation value of any quantity

*) The region of applicability of our formulation is rather limited. “When a vector potential is acting,
the Markoff-ike picture to be stated in § 3 requires certain extension.
**) In this paper we indicate an abstract operator by attaching an underline.
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4 by
(A)qu =Sp(p A4). (2-5)
Now, from p we define, according to Wigner®, a function Jf(a, p) by the transfor-
mation,
—_ 1 ?I ?/) ipylh sk
x py=——|ple— 2, v+ 7 dy, 2:6
s p) (2n72)3j"'< 2 2/¢ Y (2:6)

1 % 7% N
_—— w——V, X V) b
G BT @)@
_—_(nﬁ)*j(p[oo’)(oc’l,;]ac”)(m”|p,o“(m’+ao”—2w)dw/a’w”,

and will use the latter for the specification of the mixzed state. The function can also be
written in the reciprocal form:

— 1 oA q ﬁq. i |
f(wr p)_(Tﬂ'Z)TJ\‘ <p 2! P+ 2) ¢ /hd(], (2 7)*

where o(p, p') is the momentum representation of the density matrix. Egs. (2+6) and
(2-7) show that the function f(oc, p) is the fourier transform of o (u, ') or p(p, P’)
along its antidiagonal ; in other words, if we consider the density matrix to be a function
of ‘mean coordinate’ and °relative coordinate’, as

plae, y) =pe—y/2, w+1/2),

J is the fourier transform of 7 in respect to the relative coordinate.

The function f(o, p) should be, corresponding to (2-1),

f(2, p)=real, (though not necessarily positive), (2-8)
and satisfy, corresponding to (2-2),
{ F (e, p)dacdp=1. (2:9)

We may thus imagine, corresponding to a mixed state, an ‘ ensemble’ with the ¢ probability
distribution’ in plasc space, (2, p), though we must then allow of negative probabili-
ties. The function f(ac, p), which we call the phase space distribution function (ps. df.),
can be regarded as the reprosentative of state symmnctrical in coordinate and momentio.
From (2:6) or (2-7) we get
Ploe) = f (a0, p)dp=(a|p}ix), (2-10)
Q(p) =/ (e, p)de=(plp|p); (2-11)

that is, our ps. df. f(a, p) leads to the positional distribution and momentum distribu-

*) In this paper integral usually means a definite integral over whole coordinate space or whole mo-
mentum space. In such case we shall hereafter omit to note the boundaries ==20.
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tion of quantum-mechanical particle correctly. Accordingly, we have further
(D)o =Sp(pd (2, P))={ A (e, p)f(oe, P)ddp, (2-12a)

provided A(ac, p) belongs to the quantities that separate as
A, p)=4,(x) +4,(p). (2-12b)

This means that our phase space ensemble (ps. en.) correctly gives the quantum-mechanical
expectation values as the average values over the ensemble for any quantity of type (2-12b)7.

However, for a more general function A4 (%, p) involving cross terms of o and P
there exist ambiguities in the definition of the corresponding quantum-mechanical function
A(a, p) of non-commutable operators & and p, so that in such a case our ps. df. may

give the mean value correctly only for a special quantity A" (ac, P) among the quanti-
ties A (2, p) corresponding to the same c-number functic; A, ];) Such A™ (2, p)
is thé same_ with that defined by Weyl's” procedure, i.e., -
AW (e, p)={a(c, 0)/*™ do dr, (2-13)
where @ (0, 7) is the classical fourier coefficient of A(oc, P):
A(x, p)=1§a(e, 7)™ Jo dr. (2-14)
The above mentioned validity of the relation,

<4(W) (/E’ 2.7>>‘1“=S Az, p)f(x, p) dx dp, (2-15)

is clear from another expression of the ps. df.:
S, p)y=(2mn) *“J. Sp (e £+ Y emIOT D g . (2-16)7

Thus it may readily be found that the ps. df. does not give mean values correctly for
quantities such as, e.g., the commutator [ #,, 7], the squate of the energy /7* (except for

the case of free particle), or the magnitude® of angular momentum . In other words

our ps. df. does not reflect quantum-mechanical probability distributions correctly for

quantities such as /7 or /; (a component of angular momentum), in contrast to the case
of A,(x) or A;(p).

By the way, our ps. df. can also be written as

f(oe, p)=exp(%/2i-F, V) g(x, D), (2-17)
in terms of

g (o, p)=(wlelx){x|p). (2-18)
Here the latter distribution function ¢ (ac, p), though not real, gives the mean values
correctly for the  well-ordered’ functions'” of the form, A (2, L)> =D X" P

n, m

*)  For the components of angular momentum, the ps. df. yields expectation values correctly.
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Now we must consider the condition (2-3). Taking a function of & alone, or of

P alone, (2-3) requires

Sp(p A, ()%= | Ay(@) P(w)do = o,
SP(/l 42(]_’)2) =‘SA2(p)?Q(p) dp =.0.
These relations hold for any real function A4,(2¢) or A,(p), so that we must have
P(x)=0 ad Q(p)=0. (2-19)

This is a necessary condition but not sufficient for (2-3) (see §7).

We could represent a general quantum-mechanical mixed state with a phase space
ensemble, whose distribution function f(2, P) is not itself necessarily positive everywhere,
though required to produce a positive configuration-space df. P () and positive momentum-
space df. Q(p). Conversely, any ps. df. f(o, p) satisfying (2-8), (2-9), and certain
¢ positivity condition’ including (2-19), is a permissible one corresponding to a mixed
state. The non-positive-definiteness of our general ps. df., which stems from the same
propetty of the ps. df. for pure states, discloses the physically unreal nature of our ps. en.
It is a general characteristic of quantum-mechanical probability distributions for non-commut-
ing quantities that they cannot be detived from a single statistical ensemble based on
hidden variables, at least without admitting of negative probabilities.

When we are given the configuration and momentum distribution functions 2(ac)
and Q(p) independently, except for the normalization condition,

jP(x) de=[Q(p)dp=1, (2-20)
we can construct many ps. dfs. which are compatible with those given P(x) and Q(p).
Indeed the ps. df.
JoGe,p)=P(x) 0 (p) (2-21)

is clearly such one, and moreover any ps. df.

S, p) =P(x) Q(p) +f,(2¢.p) (2-22)

in which f; is an atbitrary function staisfying

{ f1 (e, p)dp={f(x, p)de=0, (2-23)
also leads to the given P(ar) and Q(p). Such ps. df., (2:21) or (2-22), is a permissible

one, corresponding generally to a mixed state, provided it satisfies the positivity condition.
The ps. df. that factorizes as (2-21) is a particular one having no correlation at all
between particle position and momentum™®. In this connection, it is further to be

*) Such property cannot generally be conserved with the passage of time in classical as well as in
quantum ps. en. In the former, however, this property persists in the special case of stationary canonical
ensemble, while in the latter it is not so. This is due to the difference of the ‘Liouville’ equations for ps.
dfs. in both cases (see §3).
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rematked that there can exist many distribution functions in phase space other than /(2¢, p),
which satisfy (2-8) and (2-9) and give expectation values correctly for any quantity of
type (2:12b). Examples are

Sal, p)=cos(%/2:V, V.) f(a, ),
Su(oe, p)=Re[g(x, P)].

We have considered the df. defined in 9—p space, but it may also be possible to

and

introduce a distribution as a function of another variables ¢ and 7, where & or 7 repre-

sents each a complete set of commuting observables, in such a way that it correctly gives
the quantum-mechanical probability distributions for quantities of type 4,(§) and 4,(7);

this distribution®, however, differs from the original one, /{2, ). In this sense the ps.
en. has not the meaning invariant to such pairs of unitary transformations'™ (2, p—¢, 7).

§3. Time development of the distribution
(a) Equation of motion and the transition in momentum

We shall now represent the temporal change of state in terms of ps. en. The equa-
tion of motion for p,

1k do/dt=Hp—pH, (3-1)
is written, in x-representation, as
ik dp/ot=—8/2m- (4d,—4d,)p+ (V(we)—=V(x'))p, (3-2)

since we take hamiltonian, A=p°/2m+ V(x), cotresponding to a particle in a scalar
potential I’(ac). For the intermediary function

(e, y) =p@—y/2, ®+y/2)={f(2, p) 2" dp, (3-3)
(3-2) is written as
ih Bp/ot=H/mV P, o+ {V(ec—y/2)—V(xc+y/2) 7, (3-4)

which, by fourier transformation, leads to the equation of motion for our df.:
of/at+p/m-pf=A[ f], (3-5)
with
AL f1=857 (e, p—p')f(x, D) ap', (3-6)

=_2 _1 Iy Y\sin PY 4 3.7
@ p==7 (2#72)3§V<w+2)5m w Y 87

*) It is given by
7, W)=(7T73)"‘"’S<7715/ SEN o) 81> I > (8 8 —28)dE dE.
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21 s 1
== Im [V (2p)e2w*/E), (3-8)
where
1 - .
14 =_—— | V(x) 2% g, 3.9
B) = e | V@) (3-9)

The appearance of the fourier component, [/(2p), may more easily be understood by star-
ting from the momentum representation of (3:1),

P _
i PL) L e 00 (pp)

o 2
+ j ( V(p—l)”){’ (z)ll, p/) ___{‘ (1)’ [)/l) If(z)//__p/) )a’p”,

and transforming it by use of (2.7).
By expansion / may also be written as

S py=3y 3 SO Y o (p)

1 n n: “ n n ’ (3 : 10)
n omsnzima=n g Lo, Ut Ax™ox 0 99" 0p. 200,

where €=%°/4, and 3,' means the summation over positive odd integers. Using this form,
the integral operator /I is expressed as an infinite series of differential operators®”:
_&)@-nre ny n
A f]=2 X3 ( ) 9 R ‘halﬁ’ (3-11)
n

mtnztng=n gz o7, 1 gl 9 Mox, 0" 3,90, py

—2/%- sin<—722—l7x Vp> V() (e, p), (3-12)

with the understanding that /, in (3:.12) operates on }'(ac) alone. Expressions (3-10)
and (3-11) may be regarded as expansions in ascending powers of &, of which first terms
are

JO e, pY=FV-F,3(p), AOLf1=P VT, . (3-13)

If /() is a polynomial in ot below second power, only the first terms (3-13) in the

*) To next page: The circumstance that in case of potential quadratic (including below quadratic) in
x, the ps. en. moves purely classically is closely connected with the fact that in this case, speaking with the

language of matrix mechanics, the Hamilton’s or Newton’s eguation of motion for g-number coordinates is Zzear?).
Generally in quantum mechanics formaily the same equation of motion as in classical theory holds for y-number
quantities, but, if this equaticn of motion be linear, there does not appear any groduct of g-1unibers, the rule on
which specifies the essential diference of quantum mechanics from classical theory, and therefore each matrix element
changes like classical quantity. In this case the diference of quantum mechanics from classical theory can only
present itself in the definition of the initial conditions which is reptesented by the commutation relation in
matrix mechanics, and by the subsidiary conditions for pure state (to be stated in § 4) in our formulation.
It is to be noted that the above case includes a generalized forcvd ¢ oscillator * with the hamiltonian, a =a(t)p+

B(H) 2 t-7(4)x.
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series sutvive, and then (3-5) reduces to the form identical with the Liouville equation
for the classical df. Therefore in such a case the time development of our ps. en. can
be regarded as is produced by the process that each point of the ensemble moves along
its putely classical continuous trajectory, in precisely the same manner as in the classical-
statistical ensemble.*

Such a picture, however, fails in general cases, where A[ /] is an integral operator in
momentum space. Yet, looking upon the second and higher order terms in the expansion
(3-11) as quantum-mechanical corrections, we call (3:5) ¢quantum-mechanical Liouville
equation’.  The formal interpretation of this equation leads to the following stockastic
picture for the time development of the ensemble : The coordinate o of each particle of the
ensemble changes continuously with the velocity 2/, while the value of its momentum
jumps with a ‘transition probability’ / (/ (o, p)p meaning the probability with which the
momentum jumps in unit time by an amount p~pP+dp at point x).

Now this stochastic picture has further following features: (i) / is an odd function
of P ; therefore it takes negative as well as positive values, and also

{/(x, pdp' =0, (3-14)

that is, this transition probability is not normalizable, though (3-14) serves to ensure
the distribution probability :

-a%jf dac dp=0. (3-15)

(i) The transition probability depends upon the amount of jump alone, irrespective of
the value of momentum before or after the jump. (iii) The external field V(ac) acts
so as to induce indeterministic transitions in particle momentum, but the transition proba-
bility / itself is petfectly determined by this potential. (iv) As is seen in (3-8) /J(u,
P) is of a form of a perfect sinusoidal wave in ac-space with no damping in far away
itrespective of the form of 17(a¢). The amplitude of this wave is the fourier component™**
V(2p); while its wave-length is %/2p, so that for larger jump; of momentum the ac-
space oscillation of / is more rapid, having therefore less effects when we consider the
space average over the ensemble. (v) Since

fp/(w, pYdp=—rV, (3-16)

the rate of average change of momentum agrees with the classical value. In each individual
case, however, patticle fluctuates, performing jumps in momentum, which may well be far
greater than the mean value, and may thus, for instance, penetrate a potential barrier.

(vi) The various ¢ transition moments’ of momentum components are found to be

**%) The circumstance that the probablity of momentum transition from 224 to P is determined by
V(2(p—p0)) in our stochastic picture is somewhat similar to the usual perturbation-theoretical result of quantum
mechanics, where the probability of transition from the state of momentum P to that of P is proportional to

[ —po)P.
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Hlnynang Es lepi’"2p3"3 ](x! p) dp

"y = if 7=>n;=odd,

— (—&)»-ni
Bx,MBx 0%y

I

(3:17)
o, if 7z=even,

including (3-14) and (3:16) as special cases. On account of the odd character of /,
transition moments of even otders vanish while those of odd orders survive, in contrast to
the usual Brownian processes. In the latter, the transition moments in and above third
orders are assumed to vanish, resulting in the differential equation of Fokker-Planck-Kramers™
type for the df.; the diffusion takes place in a manner essentially determined by the second
order moment, the distribution always diffusing monotonously and itreversibly. On the
other hand in our case the moments of third and higher odd orders give rise to a quite
different type of diffusion ***#**¥  The non-vanishing of third or higher order moments
means that in our process the probability that the value of momentum changes by a
finite amount in a small time interval cannot be regarded as small.

We have thus obtained a stochastic picture of distinctive features for a quantum-
mechanical change of state. Though this picture cannot be taken as a real one, for
instance, on account of (i), it may be said to represent quantum fluctuations in a pic-
turesque manner.

(b) Transition probability for a finite time interval

Our df. develops with time according to the linear integro-differential equation (3-5)
which is of the first degree in 7, and therefore, given the initial distribution (2, D, 7,),
later distributions will be uniquely determined. The time development of f may thus be
written in an integral form,

e, p, ) ={T(xprlaepys)f (X Do ) 3%, 4P, (3-18)
where the kernel 7'(acp?

2, Py £,) embodies the temporal development law of the distribu-
tion independently of the initial condition, and implies the frausition probability in phase-
space for finite time interval, i.e., the distribution at ¢ conditional in a,, p, at 2,

Naturally this function is closely connected with the kernel (propagation function)
for the time development of the wave function ¢ (%, ¢), which is written as

¢ (o, 1) =K (actlaegy) ¢ (acyt,) doc,. (3-19)
*) Cf. § 6 (a) and appendix A.

*%)  Such a result corresponds to the circumstance that the wave function (the probability amplitude)
satisfies a diffusion-type differential equation with imaginary time coefficient, and therefore, when we transform
this equation to that for a real quantity interpretable as a probability distribution by an iteration procedure,
the latter equation can no longer be of a diffusion type.

**#%) In conventional Brownian processes, furthermore, there acts a frictional force which is propottional to
patticle velocity and makes it tend to the equilibrium distribution. In our process, however, such effects do
not occur and it is impossible that any distribution should converge with the passage of time to some equilibrium
distribution that would correspond to a stationary state [see §6 (b) iii)].
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This kernel K (act|acy,) is nothing but the transformation function which transforms the
representation making ¢, (particle position at £,) diagonal to the one making 2, (posi-
tion at 7) diagonal, i.e.,
o with w=wx/, oc,=a',,
Klawtlacs) = (oo lac,,), numerically.t ’ * (3-20)

Hence it satisfies, as is well known, the iteration law :

K(act|oc,) = § K(act|act,) K (o, ct,) doc;, (3-21)
and the unitarity condition :

§ K (et |acyty) K (acyt,|o¢'t) docy=6 (ac— '), (3-22)
and so

K(act,|acyt,) =6 (x—ax,). (3.23)

As K(xt|ay,)) also satisfies the Schrédinger equation, it can be determined by solving
that equation under the initial condition (3-23). For a conservative system X may be
written as

K (ot |aeyty) = (e|e= 210 1], ), (3-24)
which is a function of 7—¢, alone in respect to the time, and satisfies
K(act|acgtyy =K* (2, k) . (3-25)

Now, corresponding to (3:19), the kernel for the time development of the density
matrix p(a, &/, ¢) is given by

§ K (et|act,) K * (o't ac,'2,) dacdocy (3-26)
and accordingly the relation of our transformation function 7" with K is found to be

1
T(wpt|w0po'fo) =~(2—7z‘ﬁ—)3j]{<w—%’ 14

o — ?:;o Jo) X

X ]{*(w_'_%, A w0+-y70, t0>€(i/h>(1)y—zroyo) dy dq o (3 . 27)

From the properties of K, (3.21)~(3.25), we can find the corresponding properties of
T. First, T is real, satisfies the iteration law :
T (a0 p t)5, Py t) = 7(% P 2[5, P, 1) T2, P, 1% Py 1) 20, dP;, (3-28)
and the unitarity :
§T(ac p 1o, 2y 1) T'(0, D, 100" P ) doy dpy=0 (—a') 3 (P—p'),  (3-29)
and so we also have
T (a0pto|0aDoto) =8 (6 —2,) 6 (P—10) - (3-30)
The 7-function itself satisfies the quantum Liouville equation :
0T (xxpt|aceity)

5 +£VT=§j(w,p~p’) T(acp’ ¢l Do t0) A/ (3-31)
m
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and we may determine 7" by solving (3-31) under the initial condition (3-30). For
a consetvative system, (o P t|ac, P, 4,) depends on Z—¢, alone in respect to the time,

and is symmetric :

T(ocp tlwopo to)iT(wopo tolwl) [)» (3'32)
and normalized :
§ T (e p tlac, p, t,)doc dp=1. (3-33)

Eq. (3-28) with (3:30) and (3-33) shows that our stochastic process is a sort
of Markoff process in phase-space with the transition probability 7, though we must allow
of negative probabilities, since 7" as well as /" is not necessarily positive. The law of
composition (3:28) may be regarded as the integral equation (“‘ Smoluchowski equation ")
for the transition probability function 7, which may be reduced to the ¢differential form’
(3-31) with (3-10). The latter equation, however, is of a type quite different from
the Fokker-Kramers-Kolmogoroff equation for usual Brownian processes, since, in our process,
the differential coefficients of 7 in and above third degree, in so far as they do not vanish,
play the roles of higher transition moments for momentum components.

Eq. (3.31) with (3.30) is written as

4
7 (aepe | xoPore) =08 (c—a0) 8(P—pP0) — Sl plmypT
0

¢
+S at Sj (¢, p—p’) 1'(xp’t| Xepot o) dp’, (3.34)
to
which may be solved by iteration as a power series in #—/¢g:
DL
Z'(ep? | Topte) =8 (— o) 6 (P —Po) + (4 —20) 71+L”—Q*/2+"',

2

with

/4
T {axp | xcapo) = —% S (P—D0) 7 30 (2c~a00) + (o—10) 7 (2, P—D0),

. 1
7y(@p | @apo) ==, 8( - Po) (PP (PF )6 (2~ 2x0)

P+
- L;-Z]—O-Vzﬁ(w—mo) J @@, Pp—po) +6(x--xp) \.j(m, D=p7) (@, P’ o) dp’.

When the potential }7(a) is, in particular, a polynomial in or below szcond power, 7" is the solution
of the classical Liouville equation with the initial condition (3.30), and hence is given by
T(fl'f])f J w(ﬂ)o?‘o) =0 (m—w; (fliopofo))l; (I)—pl (mOZ)O"O)) s (335)

where (2,, P.) is the solution of the classical Newtonian equation of motion. For example, for a free par

ticle we have
7'(ept | xaPete) =0 (P—Po) 0 (3 --Lo—ofn- (¢~-20)), (3.36)

which is quite different from the kernel for the usual diffusion, while the kernel for probability amplitude is,
as is well known, of diffusion type with imaginary time coefficient :

?n‘é[(z—fo) \\\\\\ ’ (.37)

m e (71'/11 (x—a0)?
2% =4

K (@t | avote) = (

But the fourier transformation of (3.36), taking account of the relation (3.27), gives
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- y Yo - vy | Yo )
X — Y L0 * ) Yo
‘(\w 2»1‘ Lo 2 ’[0)[‘ (w+ 2 ,f\’ﬂ’/'o‘l‘ 29t0
_ m_ \° e (x—ace) Y —Yo)
- (Zni(t—/o)) ep (— 7 T—ZT’—)’ (3.38)

from which we can derive (3.37),

§4. Subsidiary conditions for pure state

(a) As was stated in § 2, generally a ps. df. f(x, p), in so far as it satisfies the
positivity condition, corresponds to a mixed state, and the procedure of mixing of states
corresponds to a superposition (with positive coefficients) of relevant distribution functions.
Therefore, various relations thus far stated which are valid for any mixed states (including
pure states as their special cases) must be linear ones (except for the positivity condi-
tion). In fact; the expression of mean values (2.12), and the time development equation
(3.5) or (3.18) are all linear in f. Therefore the subsidiary condition that must be
imposed upon a df. in order that the df. should in particular correspond to a pure state,
must be some non-linear relation. It must be further of such character as to restrict the
functional space of the df. which is one real function of six independent variables to
that of two real functions of three independent variables, as a pure state corresponds to
a complex function ¢ (%) or ¢(p).

Since our df. f correctly gives expectation values of dynamical quantities at least of
type (2.12b) as the mean values over £, the df. for pure state must satisfy the ‘uncer-
tainty relation’ as the relation between the mean deviations of & and p:

{at) = (e ) Kot)— (i) )"} = e=37/4. (4-1)

This relation, being non-linear in f, is a necessary condition for the correspondence of f
to a pure state, but not a sufficient one.
The condition that a mixed state should in particular fall into a pure state can be

expressed, in terms of the density matrix, as p*==p, ie.,

[ (o0, ") p ", ! = e, ') (4-2)
Transforming this relation according to (2-6) we may immediately obtain the pure state
condition for f, but then the result is not of a convenient form (see § 7)*; so we will prefer
another way.

Now, if (4-2) is satisfied, there exists a suitable complex function ¢/(2) that makes
p(o, a’) written as

(0, 20 = @) ¢ @), (43)
on account of (2-1), (2:2), and (2-3). It is because (4:2) with (2:3) requires
W, =0,,, (with certain fixed 7,), when p(a, &') is put in the form (2-4). But if
(4-3) be satisfied, we have clearly

*)  But there the condition is expressed in a form symmetrical in x and 2.
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PSS ST S
Gr 8,1:,, dx; dx, "o, ax (4-4)

@G, £=1, 2, 3)

and conversely, if (4-.4) be satisfied for every ¢ and £, we get (4-3) by integrating (4-4)
and by use of (2-1), (2:2). We can therefore adopt t/iw local relation (4-4), in
place of the integral velation (4-2), as the pure state condition, under the premises
(2-1), (2-2), and (2-3).

Eq. (4-4) is of course compatible* with the equation of motion for p, which de-
termines (o, &/, £) from its initial value p(ae, &', 4,) uniquely, so it is sufficient to
impose the pure state condition at a certain instant.

Now we can get the pure state condition for the ps. df. f(dc, p) satisfying the general
conditions (2-8), (2-9) by transforming (4-4) into the relation as to f through (2-6).
Fot the intermediary function ploc, ¥) of (3-3), (4-4) is written as

1 3 >
—_— 7]

2 8,1'i 8)/, ><2 8,1: ay,c

0, (4-5)

which, by the fourier transformation, scparafes into the following real and imaginary part
equations :

g el A (VS e O .
() (L1f) =S5 (P: 1) 8( Bx; B, i 3z, 07, » (4 6)
af = of 2 F & . of of )
91, (24/) dx, (2:/)=F (ﬁk A%, 7 Az, )’ 7]

where the notation such as fixf, means the convolution with respect to p, i.e.,
J1(, p) oo (2, p)=( f, (%, P') /o2, p—P) dp/
= [ f1(o, PV, (o0, P") (P —p' —p")dp'dp”. (4-8)

We have thus obtained the subsidiaty conditions for the correspondence to a pure state,
which have following properties :

(i) The condition consists of six relations (4-6) symmetrical in 7 and % and three real
anti-symmetrical ones (4-7). Since f is a scalar, (4-6) is a tensor equation and (4:7)
a vector equation, both covariant to coordinate transformations.

(ii) They are ‘kinematical’ relations independent of the dynamical characteristics of the
system. Planck’s constant which appeared in the time development equation (3-5) with
(3-11) also enters the first condition (4-6), both in the form &=#°/4. Thus in our

*) See the foot-note of appendix B.
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formulation of quantum mechanics Planck’s constant has to play such zz00fold roles. We
may call (4:6) the ¢quantum condition ’** for the ps. en. formulation, and (4:7) the
¢ jrrotationality condition’ (see below).

(iii) The conditions are surely not linear in f, but are again integral equations quadratic
in #. If we have two distributions f, and f, satisfying both (4:6) and (4-7), the dis-
tribution obtained by their superposition, (which corresponds to mixing of states), no
longer satisfies these conditions, as it should not.

We could adopt, in place of (4-4), the similar relation for p(p, p') :

op 3‘0, —p- p ~=o, (4-9)
0p; 0P 0ps 0p%

which, by fourier transformation using (2.7), leads to relations :

(e ) * (o f) =S5 (7 2 f) = _8( aa]]; * ;’; — fx ap?Z}— » (4-10)

3 vy 0 4 (e, Y
op. ") =5, D =S (= 3 ap)

where the convolution is to be taken in respect to & in place of . This set of relations
is an alternative form of the pure state condition, being equivalent to the set (4-6) and

(4-7).

(b) Our next task is to re-express the conditions (4:6) and (4-7) in another forms.
For that purpose, first, we integrate (4-6) and (4-7) throughout over the p-space, which
procedure we shall call the ©projcction of the relations onto the coordinate space’, and
employ the factorization formula for the convolution :

§ (frx fo)dp =] fidpP{ f:dp- (4-12)
Then we get from (4-6)

(4-11)

PP— PPy, =& (P33, P—03:P-0,P), (3==0/0x,) (4-13)
and from (4.7)
3,P- Py—8,P- P,=P(8,P,—8,F,), (4-14)
where P is what was given by (2-10), and
P(x0)=(p: [, P)dp, (4-15)
P (20) = pupy f(2, p)ap (4-16)

ate distribution moments with respect to momentum components of first and second orders,

*£) Tt is to be noted that the “ quantum condition” in the old quantum theory determines stationary
(pure) states, while our ‘quantum condition’ selects pure states out of mixtures.
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respectively.  Further, by introducing the mean values of p; and p; p, at each space point,

Py =P,/ P, 2 0:(2) =P /P, (4-17)

(4-13) and (4-14) are simplified into
{ P =T Fam—E OBfoxdx,  (P=logP)  (4-18)
curl 1_9=0. (4~19)

Eq. (4:18) means the relation that the dispersion tensor of momentum, p,p,— 7; 7,
at a point 9¢ should be connected with the space derivative of the space density at the
point*, while (4.19) implies the irrotationality of the mean momentum field p (o).

Next, we multiply (4-6) by p; and then again project the result onto the coordinate
space to obtain

5 Pu+ Py Py — PiPoy — P Py
=&{(P; 0, .+ P 03; 0, P;) — (8, P; 3, P+ 9, F;-9; Pyt (4-20)

By use of (4-18) and (4-19), this can be transformed into relations symmetrical** in
# 7, and £ :

Dipipi— Pi+ D5+ D= —E{ (c‘??"ﬁ 9; 0)B+8,9; Zi}s (4-21)
which are ten relations for the (symmetrical) moment tensor of the third order :
Py (06) = P2 p; 1= 1 p3 21/ (0, D). (4-22)

Continuing similar procedures on (4:18), we get in succession relations for successively

higher moments. For instance, for the forth order moments we get 18 symmetrical rela-
tions :

2:0: P v— BB Bur=—E€ (X 3; 0k 1t 2004 50, 0:B)
+82(E 3,~ 8j %‘ak 3; 23-!-3, 3,- ak 3, S»I;)- (4‘23)***

ive

On the other hand similar operations on (4-7) lead to no new relations. We can
now take, as the pure state condition, (4-6) and (4-19) in place of (4-6) and (4-7),
or take (4:19) and all of the relations for successively higher moments: (4-18), (4-21)
(4-23),---, which reduce every moment in and above second order to even order

space derivatives of B and P (i.., the zeroth and first order moments). Thus the pure
state conditions imply such restrictions to the df. that leave the zetoth moment free,
restrict the first moments to being irrotational, and then uniquely determine the higher
moments in terms of the zeroth and first moments. Thus we find that the functional

*) It is to be noted that the mean deviation of momentum components 7;2—(#;)® at a space point is

not necessarily positive for our ensemble whose df. f(a, P) is not necessarily positive, and is equal to
—€0°P/0x;2 for pure states.

) aia,-}',c is symmetric by virtue of (4.19).

##%)  In the right side of (4.23) the first summation contains 4 terms, the second summation 6 terms,
and the third summation 3 terms.
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space of the df. f(oc, p) is indeed just limited to that of two real functions of o by
means of out pure state conditions.

In a similar fashion we may also transform the conditions (4-10) and (4-11), by
use of the projection onto the momentum space. We then obtain the relations in which
the roles of & and P in (4-18), (4-19), (4-21),--- are just exchanged. For instance,
in place of (4-18) and (4-19), we get

{ XX — T = —& 3*Q0/0p: 3 (Q=log ©) (4-24)
curl =0, (4-25)
whete
{ ﬂp) =0/ 0, Qi(p) ={x.f dx,
XX (Z’)) = /Qr Qu (p) = Sxixlcf ax. (4- 26)

Finally there is a problem more general than that of the pure state condition, i..,
to give a measure to ‘the degree of mixture’ for an arbitrary distribution f(o¢, p). It
may be achieved by the introduction of entropy 37 defined by

S =Sp(p log ) = S(—1)"/u-Sp{(F—p) (p— D"}

In terms of f, however, > should take a too complicated form.

(¢) In our formulation quantum-mechanical change of pure state is described by the
quantum Liouville equation (3-5) for the df. f(a, p, #) and the subsidiary conditions
(4-6) and (4-19) which is compatible with (3.5). Naturally this description is equivalent
to the usual one in terms of the wave function ¢/(a, #) that obeys the Schrodinger
equation : First, if the latter is given, we construct the df. f(%, p #) by use of p(a, o,
H=¢(e, )¢ (x', £)* and (2.6), then this df. clearly satisfies the quantum Liouville
equation and the pure state conditions. Conversely, if a df. f(a, p, ¢) satisfying the
quantum Liouville equation and the pure state condition is first given, we produce the
corresponding p (¢, &/, #) by use of (3.3). Then this ¢ must be hermitian and satisfy
(4.4), and hence factorize as (4.3) ie.,

oo, 2, ) =g (a0, )P+ @, 1), (4-27)

This determines the wave function ¢y up to an arbitrary phase depending upon time only ;
that is ¢ (ac, #) can be written as

¢ (@, 1) =, (2, 1), (4-28)

where /() is an arbitraty function. Furthermore, ¢%,(oc, /) here can be taken to be the
Schradinger equation :

K[¢l=(%/i-8/0¢t—F/2m-d+ V(ac))¢=0, (4-29)

because the above ¢ must satisfy its equation of motion (3.2) and so ¢(a, 7) in (4.27)
satisfies
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K[ (o) p* (o) — K g* (") ¢ (o) =0

Consequently we can uniquely determine the wave function ¢ (4, #) that corresponds to
the given df. from (4.27) and the * supplementary condition’ (4.29).

§ 5. Equivalence between the formulation in terms of phase-space
ensemble and that in terms of configuration space ensemble

(a) We have established that a quantum-mechanical change of pure state is described by
the ps. df. obeying quantum Lijouville equation and certain subsidiary conditions, as well
as by the wave function obeying the Schtodinger equation. On the other hand
quantum-mechanical motion can also be represented by certain trajectory ensemble in configura-
tion space (cs. en.), as was analysed in our previous papers”. Therefore, the representa-
tion of quantum-mechanical motion for the case of pure state in terms of ps. en. must be
equivalent to that in terms of the cs. en. We shall now examine this point in a direct
manner, taking out the correspondence between both formulations.

First we briefly recapitulate the method of the cs. en. for the case of a single patticle
under consideration. This method represents a quantum-mechanical state of wave function

P=RHHIH (R, S: real) (5-1)
with an ensemble which consists of a probability distribution of a particle in the density
P(ac) = R(x)* (5.2)
the particle momentum P being uniquely correlated with its position a¢ by
p(x)=rS(x). (5:3)

Thus the momentum field satisfies
curl p=0; (5-4)
and the ensemble has a particular p/asc-space distribution :
S(, p)=R(%)*- 6 (p—F S()). (5-3)

The Schrddinget equation is written, in terms of & and .S, as

{ 8S/3t+1/2m-(FS)*+ V— (#/2m)dR/R =0, (5-6)
C (R /ot +div(RW S/m) =0, (5-7)
of which the latter gives the equation of continuity for the cs. en. :
P/t +div(Pr)=0, (v=p/m) (5-8)
while the former leads to the equation of motion for a particle of the ensemble :
mdv/di=—V(V+V"), (5-9)

with
V'=—%/2m-AR/R. (5-10)
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Thus the temporal development of the ensemble can be regarded as is built up through
the process in which each point of the ensemble moves along a continuous path with the
momentum (5-3) at each instant, accelerated not only by the external potential }7 but
also by the additional ‘quantum potential’ (5.10). In place of (5-9) we may also
adopt the relation of momentum conservation :

O(IP) 4 100t . p BV | <200

(5-11)
o¢ ' E ox, ox; k0%,

where o, means the ‘ quantum stress’,
O =%4/4m-P 3(log P)/3x;dx,. (5-12)

We could thus associate an ensemble of trajectories satisfying

equation of motion (5.9), (or (5.11)),
equation of continuity (5.8), (A)
subsidiaty condition (5.4),

with a wave function ¢(a, ¢) satisfying the Schrddinger equation, by means of (5.2)
and (5.3). Conversely, any ensemble of trajectories that satisfies (A) corresponds to a
quantum-mechanical change of state as follows: Given a solution of (A), (o, #) and
p(x, t), we can determine X and F.S by (5.2) and (5.3), and so S(a, #) itself can
also be determined up to an arbitrary function of time, A(f). But this arbitrariness is
excluded by imposing on .S the ‘supplementary condition’ that S should satisfy (5.6),
which condition is cleatly compatible with the equation of motion (5.9). Thus we
uniquely get the wave function ¢y=R¢*’* satisfying the Schrodinger equation™®.

(b) We shall now explicitly show the correspondence between our ps. en. representation
and the cs. en. representation outlined just now in two steps.

i) In the first place, given a phase space distribution f(a, P, ¢) cotresponding to
a change of pure state, the corresponding cs. en. can be produced by ‘projecting’ the ps. en.

onto the coordinate space. This means that we introduce the cs. en. which consists of the

density and momentum fields, P(x, ) and P (2, £), derived from the ps. df. f (o, P, ¢),
by (2.10) and (4.17) with (4.15); in other words we eliminate the momentum dispersion
at each space point a in the ps. en., adopting the average momentum and the total
density at each point ®. We can then show that the cs. en. obtained satisfies the condi-
tion (A) and represents the same quantum-mechanical change of state.

To show this, first we project the quantum Liouville equation (3.5) for / onto the
coordinate space to obtain

3P/3t+div(Pp/m)=0, (5-13)**

*)  Apart from a physically meaningless arbitrary additive constant in the phase.
#K)  The stochastic transitions in momentum have no effect on the time change of the total space density,
since they occur with positive as well as negative probabilities for various jumps and cancell out in the sum.
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which expresses the continuity equation (5.8) for the cs. en. (#, p) derived by projec-
tion.
Next we project the momentum consetvation relation for the ps. en.,

a(glf) ZP; f jpfj(w' p_’pl)f (w’ p')dp’, (5 . 14)

obtainable from (3.5), and get

a(r7) , 1 s (Pp,m)——PaV

5.15)%
ot ox; ( )

Here we take into account one of the pure state conditions (4.18) for the original phase
space distribution, then the second term in (5-15) may be rewritten as

1

S .5y /P 9” log P
74 Z T 9x, \ 91 0x,

pi Pr)

. (5-16)

8,
This means that the contribution from the convection term in the ps. en. picture transforms
ta the convection term in the derived cs. en. picture plus the extra momentum flow such
as is ascribable to the occurrence of the °quantum stress’ (5-12). Now (5-15) with
(5-16) is exactly the momentum conservation (5-11) for the derived cs. en. (P, p),
and so we can also obtain the equation of motion (5-9).

Furthermore another one of pure state conditions, (4-19), for the ps. en. immediately
watrants the subsidiaty condition (5-4) for the derived cs. en. (7, p). Thus we can
conclude that the cs. en. produced from the original ps. en. by projection is in fact a possible
one satisfying (A).

ii) Conversely, if we are given a cs. en. specified with (a¢) and p(a), satisfying
(A), we can consider many a phase space distribution (2, P) which can yield that cs.
en. (P, p) by projection. However, from P and p we determine successively quantities,
p_,},c, mk,---, according to (4-18), (4-21),---, and then we can determine a ps. df.
F(ac, P) uniguely, such that it takes those values, P, By, £; P> PslsPrr +*» as its suctessively
higher moments, since now evety order moment is specified for the df. This ps. df.** is
the only one that yields (#, p) by projection and satisfies at the same time the pure

state conditions. We can further show that this ps. df. fulfills the quantum Liouville
equation.

*) In this equation for the time change of mean momentum, the effects of the stochastic transitions in
momentum induced by the external potential J” are reduced to the classical value — 73} [dxy.
**) The explicit form of this df. can be written down as

= o (e 2 (o . ) e e )-s(o . oo

where .S is a potential function for P, i.e., F.S=p.
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In all above the equivalent correspondence between ps. en. and cs. en. has perfectly
been verified.

(¢) In a previous paper”, we inquited whether the quantum potential (5.10) in the cs.
en. formulation could be analysed into a mechanism like any Markoff process undetlying.
The problem is now explained more clearly : From the viewpoint of the ps. en. formula-
tion, the quantum potential can be regarded as an apparent force appeating as the result
of projecting on to the coordinate space the ps. en. that satisfies the pure state condition
and changes according to a sort of Markoff process. We cannot, however, regard the latter
picture as a literally real one any more than the picture of trajectory ensemble under
quantum potential, on account of the inevitable appearance of negative probabilities. ~Further-
more it is also to be noted that the ps. en. could not yield mean values correctly for
certain quantities, and that the pure state condition was in a sense ad hoc.

Notwithstanding, our formulation of quantum mechanics in terms of Markoff-like
picture might further tempt the idea of some hidden mechanism of irregular external dis-
turbances which vanish in the averdge yet make the particle momentum fluctuate, acting
on particle irrespective of its momentum [see (ii) of § 3(a)]. But the features of stochastic
transitions stated in §3 (a) do not allow to construct any such model rcalistically.

Recently Weizel attempted to derive the quantum potential from certain stochastic
process based on some model. He proceeded in a considerably different fashion, but the
nature of his method may also be illuminated from out viewpoint which may be more
far-reaching than his method, standing upon the systematic formulation of quantum mechanics
in terms of the ps. en.

By the way, the mean kinetic energy of particle for the observer moving with the

mean velocity in the ps. en. is £,=1/2m-{p’— (p)°}, which is not necessarily positive,
and becomes £,=—&/2m-d%s for a pure state due to (4-18). On the other hand the
iPA?B, and so

. . . 1 1
mean pressure g, in the corresponding cs. en. is? p=—"Slo,=— -
34 3 m
we have the relation p,=2/3-PF,.
This shows that the pressure in the cs. en. results from the momentum dispersion of
the underlying ps. en. just in the same manner as the pressure of ideal gas results from

the thermal motion of molecules.

(d) We have explained that a cs. en. can be looked upon as the projection of a ps. en.
for pure state. It is to be remarked that as a result of such contraction the cs. en. gets
ftee from an unrealistic propetty of the ps. en., i.e., negative probabilities, but at the same
time it partly loses the property of the ps. en. to give correctly the quantum-mechanical
expectation values as the ensemble averages for most of usual quantities: The cs. en.
defined with density and momentum fields, P(x) and FS(a), yields the mean values for
a quantity 4 (2, p) as

(A),=§A(ax, VS) P(ac)de,
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which agrees with (2-.12a) for quantities of zeroth or first order in P but not for those
of second or higher orders®.

As for the ps. en., relations known to hold between quantum-mechanical expectation
values of some physical quantities usually hold also with the understanding that the average
over the ps. en. is to be taken, since it yields the expectation values correctly as the
ensemble averages for most of usual physical quantities. An example is the uncertainty
relation ’ stated in §4 (a); another one is the ¢ Ehrenfest’s theorem ”:  Integrating (5-15)
throughout over the a-space we get

@ (x| de=d(p.), ) di=—(aV/0x.)

which is valid for general mixed states. In the particular case of pure states, this relation
may also be written, in terms of the quantities in the s, en., as

2

s

- [wP dw=—:7jP[7 dw:——jPV V d.

Still another example is the ©virial theorem’,

d(mp),/dt: 1/7)1- (pf)f—}- <.’B’7 V>f,

and also the variational theorem, into which we do not enter here.

§ 6. Applications of the ps. en. formulation to some elementary

examples of pure state cases
(a) Distributions without correlation and the diffusion of wave packets

i) We shall ask whether there can exist any pure state distributions having no correla-

tion at all between particle position and momentum. Such distribution must factorize as

f(x9 p)=P(90)Q(]‘)), (6'1)

and therefore satisfies one of the pure state conditions (4-19) from the outset. Since it
must further satisfy (4-6), we obtain

Blog P 1, (e =y =real const.) (6-2)
0x; 0%,
(2:2)+(2a2) — @ (£: po2) = — (1/2) Eatyy Q% Q. (6-3)
Eq (6-2) yields
= const. exp| — ?_,:aik X Xt 327’1 ) (6-4)

which can be led, by a suitable orthogonal coordinate transformation,
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2! =3 ca Ay (6-5)
%
to the form
P(axc) =const. exp[ —>la;(x/—a/)?}, (6-6)

where each a, should be positive so that P should be normalizable.
Next*, re-expressing (6-3) in terms of the fourier transform for Q(p),

1(n) =§Q(p)er dp, (6-7)

we get

oy oy 2%y & .
p— N __+ e =~ . 68
B g Yopdm, 2 % (6-8)
This is a equation similar to (6.2), and can be integrated into

log y=—&3 (3 — 0%)* + const.,
i

where 7,’s are the new components produced by the coordinate transformation (6.5) applied
to 7's. We have now

Q(p) =const. exp[ — g (1/4&a;) (2! —5)%, (6-9)

where p/=3c, .. Altogether, our distribution must be of the form
k

{ f(ac, p) =const. exp[— 2 {ai(x!—a/) +B(p/—86/)} ], (6-10a)
af=1/%, (6-10b)

namely it is Gaussian for each freedom of position and momentum components in a suitable
coordinate system, with the relation (6.10b). It has the minimum ° uncertainty product’:

((xz'— <x4>/) 2)/' ( (Pt_ <pz>f) 2>f=8'

The wave function corresponding to (6.10) can be obtained according to the proce-
dure of §4 (c): Fiest we derive

p (e, y) = {f(ac, P) e PYE dp=P(a) -y (—y /)
=const. exp [—{a,(x/—a/) + (1/4) a:y*+ (i/%) 6iy/}],
from which the density matrix is obtained as

p (2, ) =const. exp S\ —a;/2- {(x/—a/)+ (x,/ =)’} + (¢/%) & (xf —x/)]

so the wave function takes the form

¢ (xc) = const. exp[—g—(;'—" (x/ —(z,:')s-}-i(g&,'x;’/k +A(t))], (6-11)

¥} From here on it would be simpler to proceed as follows: The other form of the pure state condi-
tion, (4.10), yields 8 log Q/8f; 8p%=-B:x/2 which is similar to (6.2), and the condition (4.18) further
requires (6.10b).
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which is nothing but the general form of the ‘ minimum wave packet’.

ii) Next we shall ask whether or not the form of the distribution (6.10) (i.e., the
property of having no correlation) be conserved during the course of time. First, taking
up the case of free particle*, we suppose that a distribution of type (6.10),

£, 2) =_;7;., exp[—a(x—a)ﬂ— alﬁg (p—/;)ﬁ], (6-12)

(here considering one-dimensional case for simplicity) occurs at a time /=#, In this case,
as was stated in §3 (a), each point in the ps. en. moves classically with its respective
constant velocity, and the disttibution at time 7 is given by

S(x, . 0) =fo(x—p /1 (t—10), p)

__Lex{ (
Tk P

But this is no longetr of type (6.10), and indicates that the cotrelation grows with time.
The phase space distribution (6.13) gives at once the space density in the well-known
form

] (6-13)

D3y = | Fidp— o« Yexp| — . alr—a)’
P(x)=\jdp= const[1+“af/m) V—fo :l PL (1 (ahfm =1y }]

showing that the distribution in coordinate space diffuses with the passage of time. Thus
the so-called ‘diffusion of wave-packet” in this case is, from our viewpoint, simply a
result of the fact that each point of the ps. en. petforms the purely classical motion with
its respective momentum™, In other words the simple circumstance that the particles

which move faster cover the greater distances brings about the spreading of the packet
and at the same time introduces correlation.

(b) Linear oscillator
i) The hamiltonian is
H(x, p)=1/2- (") +mw’y’),

and the quantum Liouville equation is identical with the classical one :

Af /3t +p/m-0f | dx— 1w’ x Bf/ 3 p=0, (6-14)
of which the general solution is

J=F (' + (mwx)?, —p sin !+ mox cos wt). (6-15)
Now in case of oscillator, if there can exist a pure-state distribution having no correlation

during the course of titae, such distribution must be of the form (6.12) and at the same

time consistent with the form (6.15). This determines the parameters in (6.12) such
that

*) For the case of oscillator, see (b) i).
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a=mw/l, a=aqa,cos 0!, b=—mwa,sin wt, (ay: const.) (6-16)

and so we must have the df. of the form,

f(x, p,¢) :—Lexp [—ﬂ({ (x—a, cos w’/}“’—~—1——- (p+agmnew sin wi) “':I. (6-17)
nh i mot
This distribution takes its maximum value at the point (x=g, cos w/, p= —aynw sin w?)
in phase space, decreasing around it in Gaussian manner. With the passage of time the
distribution rotates, Zccping its form rigidly, along an ellipse around the origin of phase
space with the angular frequency w.

The corresponding wave function' is obtained by inserting (6-16) into (6-11) as

¢ (x, )= exp[ — 72;17;) (x—a, cos wr)’— % mwra, sin wt-+id (Z)J (6-18)

Its phase, S=—mw/#%- va, sin wt+ A({), involves a yet undetermined part A(z), which
is determined, by the ¢supplementary condition’ (5.6) for S, as

1 mw - . 1
Aty =— a,” sin 2wf—-—w?. 6-19
(=1 220 4 ! (6:19)

i) As previously stated, for quadratic potential such as in case of oscillator, the ps. en.
develops classically. On the other hand, in such potential, also in the cs. en. formulation,
we have particular solutions” which consist of purely classical trajectories, with quantum
potential vanishing, and are determined by the following equations :

S+1/2m- (FS)*+ V=0, (6-20)
7 (4S) =0, (6-21)
P(?) =const-exp [— (1/m)§*dS dr]. (6-22)

Now, such a cs. en. corresponds to a ps. en. with the df.

Sf(x, p, 2) =(271172)3 P() jexp -; [5(90-—?7/, t>-5<w+%, z>+py]a’y, (6-23)

which can be simplified in one-dimensional case as
FCt o ) =P(2)-0(p—3S/3), (6:24)

because from (6.21) we have S(x—p/2)—S(x+yp/2)=—y 3S/0x. The expression
(6-24) (together with (5-5)) shows that for such particular quantum-mechanical motion
the ps. en. and the cs. en. become identical with each other.

In the case of oscillator, a solution satisfying (6.20), (6.21), and (6.22) is given
by®

P=const/sinwr, T=t¢—1,) (6-25a)
S= (mw/2sin wr) {(27+2,")cos wT—2x%,}, (6-25b)
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and so by (6.24) the corresponding df. becomes

A2, p)=f(x, p) =const. J(p sin wr—mw(xvoswr—1y)). (6-26)*

This expresses an ensemble of trajectories flowing out %, at 4, with auy velocity. The
corresponding wave function P (/% is nothing but the propagation kernel K(x#|xy,).
It is to be noted that the ‘transition probability’ of §3 (b) is a different thing from the
above df., and is given by (3.35) in this case, implying the distribution at # when a
particle starts from x, at 4, with a dzfinite momentum g2,

iii) We call a time-independent solution of (3.5) a stationary distribution,
where the deviation of the distribution to be caused by the momentum transition
with the transition probability /(a¢, '— p) is exactly compensated with the effect of the
translation of particles.

A quantum-mechanical eizevgy ctgen-state corresponds to a stationary distribution sucl as
satisfies the purve state conditions in our phase space formulation. It is, however,
to be remarked that such distribution is #of suited to be called “ energy eigenstate” in
our picture. Generally quantum-mechanical eigenstates for /7 or /; cannot be specified as

the ps. ensembles satisfying pure state conditions and having no dispersion in respect to
respective quantities (cf. §2). We shall next see this point for the case of oscillator.
As is well-known the stationary state wave functions for the oscillator are

172
sﬁn(fv,z):(;;ﬂ—”') TR I () et D k= (mw/B)"*  (6-27)
from which we can obtain the corresponding ps. dfs. as
p g P

Fules oy = e e a1, ) ). (6028
(]

Each of these distributions has a constant density on an energy surface, as it should for
a stationary distribution in case of any quadratic potential, and takes negative as well as

positive values, giving the quantum-mechanical expectation value of energy correctly as
(H o =VH (x, p)fo(x, p)dx dp=(n+1/2)ko=FE,= (H )

However, it cannot give the expectation value correctly for any power of energy, /7*(v=2),

because f, distributes over an arca in phase space.

The ps. distribution that yields the probability distribution correctly for / is clearly the

*) In this case the wave function and therefore the ps. df. are not normalizable ; the const. in (6.22)
and (6.26) are in reality infinitesimal.

. 7 (—1)n
**%)  L,(¢) i5 a Laguerre polynomial defined by Z,.(¢) =k{)—(_7?")_ Z)ck. These distribution functions

(—1)»r? fu(x, ) (2=0,1,2--) constitute a complete orthonormal set as functions of (4/%w) Z/(x, #) in
the domain (0, ).
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one which concentrates on the ellipse, A (#, p)= (#+1/2) %o, in phase space, i.e.,
S (x p) <0 (H(x, p) —(n+1/2)hw).

Such distribution cannot, however, correspond to any state, as is understood, from the fact
that it does not satisfy the Wigner's condition (7-1).

§ 7. Remarks on the Wigner’s condition and alternative
forms of the pure state condition

(a) E.P. Wigner pointed out* that following two important conditions are further
necessary, besides the conditions (2-9) and (2-19), for a ps. df. f(2, P) to be a
permissible one corresponding generally to a mixed state. They are

If(w9 p)]g(Z//z):‘, (7'1)
28 f(ae, p)doc dp < 1. (7-2)
The condition (7-1) which is derivable by applying Schwatz inequality to (2.6) with

(2.4) indicates that a possible df. should extend at least over a phase volume (/%/2)%
expressing in a certain degree the uncertainty principle for the general case of a mixed

state. The left side of (7-2), being
/2§ f(ac, p)°doc dp=Sp =3 w’ (7-3)

(where ¢, is the quantity defined by (2.4)), becomes unity for a pure state and is
smaller for a general mixed state. This quantity may be taken as giving a measure to
the degree of mixing, though it is different from entropy defined in §4 (b).

The Wigner’s conditions (7.1) and (7.2) must be regarded, together with (2.19)
as a part of the ¢ positivity condition’ stated in § 2, which means the condition to be
imposed upon any possible ps. df. corresponding to (2.3). These conditions (2.19), (7.1),
and (7.2) may not yet constitute the sufficient one, since the positivity condition means
that every w, be non-negative and so it would require infinitely many inequalities of a type

such as (7.2). Indeed, the condition (7.2), which is expressible in terms of density
matrix as

fp(ac ayp(a a) doc dxe’ <1, (7-2)
is merely a part of the condition
(@) p(a'o) ' < p(ae ) = P(ao). (7-4)

The latter condition (7-4) is also a necessary one, and is expressed in the language of

the ps. df. as

2( f(' D) (&' p')cos[2/k- (p'—p) (&' — ) Jdp dp’ do’

*) Comment on the author’s work at Nagoya (Sep. 1953).
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< (fap)dp=P@@).  (7-5)
The left side of (7-5) is non-negative, and therefore (7.5) means a severer condition than

the fiest relation of (2.19), and at the same time involves (7-2). Similatly the second
relation of (2.19) can better be teplaced by

2°§ f (o p) (o P)cos[2/E- (P —p) (&' —x) Jdoc do! dp’ < Q(p). (7-6)
(b) Next we shall reconsider the pure state condition. Taking the equality sign in
(7-2) we obtain
225 flae, p)* doc dp=1 (7-2°)

as a necessary condition for a ps. df. to correspond to a pure state. This condition has
a different form from those obtained in § 4. Now we can show that the pure state condi-
tion can also be expressed as a series of infinitely many relations each of which is of a
type similar to (7-2°), the series including (7.2°) itself as its first relation. For that
purpose we start from the original form of the pure state condition for density matrix,
(4-2), in place of (4.4). Re-expressing (4.2) in terms of ps. df., we obtain

2(f (=2 p){at+ 2, p) exp L (20 —) (@~ @) — (p+p) Y]’ dip dp

=jf(:1‘,p) exp (-2 z'/ﬁ-py)dp~ (7'7)

This complicated relation involving two continuous parameters & and 3 can be split into
a series of infinitely many simpler relations by the following two-step procedure. Fitst,
integrating (7.7) over the whole ac-space, we obtain

/'b'!g f(ac — %’ p) f(ac + ?_2’ , p)exp (— Z%py )a’w dp

=jf(w, p)exp(—Zé-py)a’w dp. (7-8)
Next we integrate (7-7) after multiplying x; on both sides to obtain
: 1 ) Y I N ot Y
e )4 e L)oo )]
‘ PR ziapif top ! zf\ P
X exp(—-Z—; py)a’ac ap

:jxif(oc, p)exp(——lép?j)a’w ap. (7-9)

In similar fashion, we multiply (7.7) successively with x; a7, 2 a; x4+, and then
integrate the results over the whole ac-space to get a series of relations involving
p-differentiation of saccessively higher orders.  This series of relations, (7.8), (7.9),---,
may be regarded as equivalent with the original (7.7).
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The second step is the Taylor expansions of (7.8), (7.9),--- with respect to y. Then
we get from (7.8) the relations :

(7.2°),

W pof? doc dp={ p;f dc dp, (7-10)
of of

/ Ka v ar. + mnf )dw ap = jp,.pkfl{w ap. (7-11)

Similarly (7.9) yields

iz f* de dp= sx,-fdw dp, (7.12)

We have thus found that the pure state condition can also be expressed with a set of in-
finitely many relations,

(7'20)’ (7.10), (7.11),-5 (7.12), (7.13),075 -y

which are symmetrical in & and p and of different expressions from the previously obtained

ones,

(4.6), (4.19); or (4.19), (4.18), (4.21),--

But both forms should be equivalent with each other, which fact may be understood if
we return to the expressions in p, though it may be difficult to show it directly.”

(¢) We could take either (4.2) or (4.4) as the pure state condition in terms of
density matrix. We have, however, still another relation valid for a pure state,
p(acac) p(ac'ac”) = p (acoe’) p (o) = | p (e’ ), - (7-14)

though it is a necessary but not sufficient relation for the pure state condition. It can
be shown that the relation (7.14) is derivable from (4.4) by the Taylor expansion of
the former. It is also to be noted that the integration of (7-14) throughout over the
whole ac’-space yields

p(acac) = { p(acac”) p(ac’ac)doc, (7-15)

which is also a special case of (4.2).
Now we shall translate the relation (7.14) into the language of the ps. df. to obtain

Pla—y/2) Plao+y/2) =]/ (a, p)e~v dpl’. (7-16)

*) For this point, see also (c).
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If we next expand (7.16) into the power series of », (7.16) turns into a set of relations,

5 ox o DY p @) P ()

T1ra”3 S15283 7’]! 7’(_,! 7’3! 51! SQ! 55!
(ritsi=ny)

— (=9 29,719,720, P(o0) - 3,410,295 (o¢) |=0,
(n="",==2, 4, ), (7-17)
2
with
Priryry = § o1 i 37 J (20, p) 4p,

where the summation is to be taken for zero or integer values of each 7y, s, with 7,45,
=7, fixed. The lowest relation (7=2) of (7.17) is nothing but (4.13) (i..,(4.18)),
and the next one involves the fourth order moment.* Thus we see that the relation (7.17)
or (7.16) consists of just a /alf of the former relations (4.19), (4.18), (4.21),---
of the pure state condition corresponding to (4.4).

The relation (7.15) is expressed in terms of f as (7.5) with equality sign, which
can be split into a series of relations, (7.2°), (7.12),--- by the procedute of taking
moments with respect to 2. These relations, on one hand, natutally coincide with a part

of relations obtained in (b), and, on the other, must be derivable from (7.17), since
(7.15) was a result of (7.14).

Our method is essentially the transcription of von Neumann’s density matrix method*”
through a particular fourier transformation of a specified representation of the latter which
formulates quantum mechanics generally for mixture and characterizes a pure state by a
subsidiary condition, thus leading to formulating quantum mechanics in a closed form in
such a way that it is associated with the phase-space ensemble picture.

Really the method was described for the case of single non-relativistic particle, but it
would also be interesting to apply this method to the case of a many particle system.

In conclusion the author would like to express his sincere thanks to Professor S.
Sakata, Professor K. Husimi and Dr. S. Nakajima, and also to Professor E. P. Wigner,
for kind interests and valuable discussions on this work.

*) For one-dimensional case it is
PPy~ 4P Py3P = (%[4){ POIP—45 P-3° P+-3(3° P)t},
with Po=\pr f(xp) ap.
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Appendix

A. Examples of the momentum transition probability J(x, p), simple but
not reducible to 'V p.0(p)

i) For a linear rectangular potential barrier: [(x) =V, for |z| < /2, and 0 for
|x] = a/2; we have V(p)=1/7-V, sin (pa/2%)/p, and so

J(x, p)=—2V,/mhp-sin(pa/k) sin (2px/%).
ii) For a periodic potential, 1 (a) =3V,c**»*, we have V(p) =23V,0 (0 +7#k,), and so

S, p)=~ %Im[z V, =] 5(p+ »i—»ﬁk,.) .

. Therefore particle momentum can jump only by an amount of some  resonance value’ %k, /2.

iii) For Coulomb potential VV'=—¢*/7, we have V(p)=— (¢/27°%) 1/¢°, so we obtain

_ 28 sin(2px/%)
](w’ ) 25 Vi '

In this case momentum cannot jump in the direction perpendicular to the force.

B. Alternative procedure for obtaining the pure state conditions
in the form of §4.(b)

When our pure state condition for the density matrix, (4.4), is satisfied, we can
derive from it the relations,

D (52, 1y 13) p- 35 p—p= D1y 15 1,) 04/ 0 =0, (B-1)
by differentiation, or further, even more general form
Dy nynus)p-D' (1f 1y ng)p—p+ Dy 11 15) D' (0 2 1)) p=0, (B-2)

where D (7, 1, 115) ==9," 3,72 85", D' (ny nd n!)=09,"" 3;/™'* 3/*"* with 8;=03/9x; 8=
8/08x/, n, and u/ being non-negative integers®.
Now, if (4.4) holds for any values of & and &', we must have

[ Doty 11y 123) (85 084 p— 084 84 ) Juear =0, (B-3)
for >} #,=0, 1, 2,--» 0,
1
by the Taylor expansion of (4.4) on the diagonal. (B.3) can further by replaced by
(D (11 ny 1) p- 3 p— o D (121 15 13) 'y, pJagmar =0, (B-4)
for > 7,=1, 2, 3,-+-co.
1

*) Tt is to be noted that the compatibility of the pure state condition (4-4) with the equation of motion
(3.2) for p can here be shown explicitly, as we can derive
8/0¢ (8:00/4p—08: 027 p) =0
from (3.2) and (B.2).
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We can thus replace the pure state condition (4.4) by a scrics of relations on the dia-
gonal, (B.4). The lowest relation of (B.4) is

[85 f a/cl o—=p aﬁ alc/ f'].r:;x:l:‘_oy (B . 5)
and its complex conjugate is
[_alc r ai’ f—p a/c ai’ (’]:::=.rl =0, (B . 6)

which is, however, identical with the relation (B.5) with 7 and /% inter:hanged. Therefore
the nine complex relations, (B.5), are not independent of each other but consist of six sym-
metrized 7¢a/ equations,

[(ai p ol p+9, g 3/ p) _{’(ai' 0y p+3, 0/ f’)]m=m'=0’ (B-7)
and three anti-symmetrized 7cal ones,
i[(ai 4 9y f— B o 3/ {’) —P (a‘i 9 p— 3/ P) ]x:xr-_—'o- (B : 8)

The next relations of (B.4),

[af af ” al-:, = 0; aj 81c, lo]-’t=90’=0 (B,9)

are not independent among themselves, too, on account of (B.S5).
Now our next task is to represent the conditions (B.4) in terms of the distribution
function. First we re-express (B.4) in terms of [i(ac, %) to obtain

L 2 e,
=123\ 2 91, 3y, 2 2x, O

:[/—;-{ /! _1_ _?___a._)"l} i i-{— 2 )l/] . (B.]_O)
=123\ 2 3x, I, 2 0x, Oy =0

Here, using the relation

LGy 1o = (=) P,

y=0

with Privgrs=={ p1 p72 pys [, P)dp,
(B.10) is transformed into the relation :

723,722,013

7‘]’7‘%;:0 ?l>7‘1+7‘n+72<ill><llo></1«)[([[al Z>PI’17’27‘3 <% 8,P —%Pk)

— [’(11781"1_"1) <%8kP7'1 Tar3 T ; Plrrgr) + 11«:)J =0, (B -1 1) *
/2

which may further be separated into real and imaginary part equations. Thus we have

obtained the pure state conditions in the form of relations between distribution moments

*) -P(')'! »0 r3)+1,c 17l+61 PARERE TN & Tytdg e
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of successively higher orders in respect to p. Especially we find that the lowest relations
(B. 7) and (B. 8) transform, according to these procedures, just into (4.18) and (4.19),
respectively, while the transforms of the next relation (B.9) become (4.21).
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We postulate a formulation of quantum mechanics which is based solely on a quasi-probability function
on the classical phase space. We then show that this formulation is equivalent to the standard formulation,
and that the quasi-probability function is exactly analogous to the density matrix of Dirac and von Neumann.
We investigate the theory of measurement in this formulation and derive the following remarkable results.
As is well known, the correspondence between classical functions of both the position and conjugate mo-
mentum and quantum mechanical operators is ambiguous because of noncommutativity. We show that
the solution of this correspondence problem is completely equivalent to the solution of the eigenvalue
problem. This result enables us to give a constructive method to compute eigenvalues and eigenfunctions.

1. INTRODUCTION AND SUMMARY

T is well known that, as a general rule, for macro-
scopic phenomena, classical mechanics furnishes
quite a good description of nature. If we have a me-
chanical system, it is described classically by a Hamil-
tonian function H (g,px,t). Classical mechanics asserts
that if we measure the system, we will find it with
unit probability at a point, (g:(9,p«(#), in phase space
which moves in accordance with Hamilton’s canonical

equations,
gr= {q")H}) p.k= {PIDH}:

where {4,B} is the classical Poisson bracket.!

We find experimentally, however, that it is not
possible to make the measurements necessary to
establish the classical trajectory. The fundamental
limitation is expressed by Heisenberg’s uncertainty
principle which states that it is impossible to ascertain
the position of a system in phase space more accurately
than to say that it is in a volume of the order of %,
where # is the number of degrees of freedom and % is
Planck’s constant. The uncertainty principle shows us

* Submitted in partial fulfillment of the requirement for the
Ph.D. degree, University of California, Berkeley, California.

MZ in\](':ow at Los Alamos Scientific Laboratory, Los Alamos, New

0.
1 H. Goldstein, Classical Mechanics (Addison-Wesley Publishing
Company, Inc., Cambridge, 1953).

the need for a different representation than the classical,
moving phase-point.

For the case of quantum-mechanical systems in
which all observables may be expressed as functions of
the coordinates and their canonical momenta (g, ps),
we may represent the system by a quasi-probability
(not everywhere necessarily non-negative) distribution
in phase space, instead of the more usual Heisenberg
or Schrédinger representations. We shall see that the
impossibility of simultaneously measuring comple-
mentary quantities (such as ¢ and p) will be closely
related to the occurrence of “negative probability.”
We show that the quasi-probability distributional
representation is equivalent to the standard formula-
tion. In our formulation, we replace the classical
condition of a point representation with a corresponding
quantum condition, and with the aid of the corre-
spondence principle, are able to derive the dynamical
law.

By introducing the appropriate orthonormal set, we
are able to show that the quasi-probability function
which we use is isomorphic to the statistical operator
of von Neumann.?

*J. von Neumann, Mathemalical Foundations of Quantum
Mechanics, translated by R. T. Beyer (Princeton University
Press, Princeton, 1955).
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As a result of our study of the quantum theory of
measurement, we are able to develop a method for
constructing the solution to any quantum mechanical
eigenfunction problem. The problem of the corre-
spondence between phase space functions and the
powers of a given physical quantity is shown to be
equivalent to the solution of the eigenfunction problem,
and we give an explicit rule to determine this corre-
spondence.

II. QUASI-PROBABILITY DISTRIBUTIONAL FORMULA-
TION OF QUANTUM MECHANICS

This formulation of quantum mechanics is based on
the following postulate:

Postulate Q.—There exists a quasi-probability distri-
bution function f{(gi,px,t) of the conjugate coordinates
(gr;px) and the time, ¢, satisfying the conditions

4-c0 +o0
f f fdgy- - -dgudps- - -dpa=1,

(normalization) (1)

+ +oo
f t f | fl%dgy- - -dgudpy- - -dp. exists,
- - (boundedness) (2)

f=k(£f), (quantum), 3)
af —1
—_= ‘_—[f:H]) (d}’namical), . (4)
al 3

where H (g,pr,t) is the classical Hamiltonian function,
which completely defines the quantum mechanical
state of the system.

We have used the definitions

2\ 21 o +0 2 19 #;
A,B=(—) f f cosd— > det{l 7; oy
( ) k —w -0 7 i=l ! !
L &g o

XA(Tk:"'k)B(Ek)"k)dfl v 'dEnd"Il' .

Xdnadry: - -drndoy- - <don,
and
Jyon o P P 1 g #;
[A,B]=2(;) f f sin{— > det|{l 7; o
—t0 —00 f=1

§ 1 &

X A{r,00) B(Erym)dér- - -dEndny - -
Xdnudry- - -dradoy- - -dog.

We remark that one can show for properly restricted
A and B, by applying a suitable form of Riemann’s
theorem on trigonometric integrals, and an integration
by parts in the second case, that, in the limit as %

2199

goes to zero,

(4,B) — A(qu,px)B(gr,p),

l[A 5] (A,B) i 84 0B 04 83)
LA, - 3 = U A
7 =1\3g; 0p; 0p; dq;

The relation for the sine bracket converts condition
(4) into Liouville’s theorem and hence in the classical
limit f changes in time like a classical statistical
mechanical distribution would. The relation for the
cosine bracket, together with condition (3), implies
that f tends to a distribution on a set of measure zero
in the classical limit. Thus, in the classical limit, this
formulation reduces to a phase point executing a
classical trajectory.

It is now our purpose to show how the quasi-proba-
bility distributional formulation is related to the density
matrix formulation of von Neumann and Dirac. To do
so, we first show that the distribution function may be
written in the form given by Wigner.? We then show,
by introducing an appropriate orthonormal set, the
one-to-one correspondence between the quasi-proba-
bility distributional formulation and the density matrix
formulation,

It may be useful in following the derivations given
herein to think of the quasi-probability distribution
function as a particular representation of the more
familiar density matrix, and the sine and cosine
brackets as the commutator and one-half the anti-
commutator brackets, respectively. We show that there
is an isomorphism between the density matrix formu-
lation and the quasi-probability distributional formu-
lation.

We now show that we may write

R % »
f .. f exp{ -— 3 &Pk}f(qh?k)dpl. odpa
e 7z

(3

where g depends on the state of the system. It follows
from the definition that [4,B]=—[B,4]. Therefore,
L£,£1=0. So, by condition (3) of postulate Q,

= g*(qit51) g(gr—55),

s=( (f,ﬂ+2[f,f]),

227! 40 ~§-00 21: "
f=_h_"f_¢, e f_w exPl Py E[Pi(fi“ £)—oi(gi—ts)

—q(r— q;i):!]f(fhﬂ)f(&;’ﬂk)d& e

XdEndyy < -Bnndrye ¢ BTodoy - - o,
3 E. Wigner, Phys. Rev. 40, 749 (1932).
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2200

Let us make a change of variables of integration:

ri—&=y5, trté=witg;, Jacobian=(}H)".

Then

2 n o 4-08 2i n
= —— P — »_l », . .
f (n) L [ em{hiZ_l[?,:v, 30i{gi+y;

—w;)+ini(gi—yi—ws)] ]f((wk+yk+l1k)/2, ax)

Xf((wrl-q»—yk)/Z. 1e)3w; - - -dwadyy - - -
Xdyudn -« -dnadoy- - -don.

If we take the Fourier transform of the above relation
with respect to (pi),then, defining the auxiliary function

i}

oo +0 % n
Glartonaimsd= [ [ en| =2 pisi|
X f(gupr)dpr- - -dpn,

we obtain, by Fourier’s integral theorem,*

Glgutsx, gx—sx)
+o0 +oo
=f .o .f G(qk+sk, wk)G(wk, qk—sk)dwl- - 4w,

If we think of G(gi+sw, wi) as the kernel of a homo-
geneous, linear integral equation, we see that it has at
least one solution, i.e., G(ws, gx—s¢) and its eigenvalue
is unity. By a slight modification of the arguments of
Courant and Hilbert,® we know

4o +oo = 1
f f [Glqryws) |%dqs - - -dgudir - - -dwa> Y IV
- » =1 |\

where the \; are the eigenvalues. But, by the relation
we derived above, the integral becomes

40 +<0
f - f G(gx,gn)dgs - - -dgn,
as G(x,y) =G*(y,x), which is, by definition, equal to

oo +oo
f . f flqupr)dgr- - -dgadpy- - -dpa=1,

by the normalization of f. Hence

121+i .
=2 {)\,-]2

4E. C. Titchmarch, Iniroduction to the Theory of Fourier
Integrals (Clarendon Press, Oxford, 1937), Chap. III.

§ R, Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience Publishers, Inc., New York, 1953), Chap. III, Sec. 4.

GEORGE A. BAKER, JR.

Therefore, there is only one eigenvalue, 1, and by the
above-mentioned arguments of Courant and Hilbert,
we see that G(x,y) is a degenerate kernel, and so must

be of the form
G(x,y)=g*(x)g(y),
which is (3').
If we take the inverse Fourier transform of (3") on
(s.) and identify g with the wave function, y, we obtain
the Wigner form for f. Hence

Q) [ ol

X¥*(gety¥ (@e—ye)dyr - - dya. (3"

It is this form which Wigner® chose “from all possible
expressions, because it seems to be the simplest,”
although he knew only that it gave the correct marginal
distributions. Moyal® has shown that it also gives the
correct joint distribution if we make the “Weyl corre-
spondence’”? (see also, Sec. III below) between operators
and phase-space functions. Moyal investigates the
quasi-probability distribution function from the point
of view of modern statistical theory and the theory of
general stochastic processes. Groenwold® and Taka-
bayasi® have also investigated this form and some
equivalent forms of the quasi-probability distribution
function.

We remark that, if we integrate first on p and then
on ¢ that the normalization of f insures that ¥ must be
square-integrable, and hence belong to a Hilbert space.

III. RELATION BETWEEN THE QUASI-PROBABILITY
DISTRIBUTION AND THE STATISTICAL
OPERATOR OF VON NEUMANN?

Following von Neumann, we introduce an ensemble
of systems each of which is in a “pure state,”” and each
state has a certain frequency of occurrence in the
ensemble. The quasi-probability distribution function
for the ensemble need not satisfy condition (3) of
postulate O, but rather it is a sum of functions which
do. Hence f for the ensemble will be

f=2Z s wof,(qups)-

Let us introduce a complete orthonormal set of wave
functions {¥;(¢x)}. From the form (3') of f, we know
that to each f,, there corresponds a ¥, which we may

expand as
'ﬁp=2i an‘“’.r'-
It then follows at once that

f= Z .u)papl'*apff‘iy

LAY

¢ J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).

"H. Weyl, The Theory of Groups and Quantum Mechanics,
translated from the German by H. P. Robertson (Dover Publi-
cations, New York, 1931), p. 274.

* H. J. Groenwold, Physica 12, 405 (1946).

¥ T, Takabayasi, Progr. Theoret. Phys. Japan 11, 341 (1954).
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where we define
+@ 2 n
f exP{—‘ > ykml
7 k=1

Jislaupe) = (Z) fj- [

X¢* gty i (@e—ye)dys - - -8y,

The f.; have certain orthogonality properties which
we shall now note. These properties have been, in
essence, derived by Moyal® for one degree of freedom,
but their proof for » degrees is the same. They are as
follows (variables of integration suppressed):

@ f fi*fim=0 if and only if

f V=0, or f ¥ ¥m=0.

@ [ 1fsl=rn

The ¢, are an orthonormal set if and only if the

(iii)

poie ]’“ are
(iv) fj,»,-=6.~]~, if the set {y,} is orthonormal,
(v) I and only if the set {y.} is a complete ortho-

normal set,

2 fiiqupe) f3* (@i’ sp”)

=k ka 8(ge— )6 (pr—4").

(vi) If {s} is a complete orthonormal set, then A% f;;
is a complete orthonormal set in the Hilbert space of
phase-space functions. This is to say that, not only do
the f;; form a basis for the quasi-probability distribution
functions, but they also span the entire Hilbert space
(Ls) of functions on phase space.

If we now compute the matrix

~+m —+00
[hﬂf .. .f f'.j*qul. . ‘dQndQI' . .d?"]’

we obtain

[Zp W,8,*,0,55 ],

which is just the matrix for von Neumann’s statistical
operator [ U/;;]. The matrix corresponding to a quantity
R(gr,px) is seen to be

[Ronl= L . fjk(qk,m)

X frm* (qrspr)dgrs « dgndprs » +dpa,
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as the expected value of R(gs,pr) is given correctly by
von Neumann’s rule:

(R)="Trace(RU)
for all U. For

Tr(RU)=Z R,',,,Umj
im

=2

im

o0 oo
= f R(gu,p) £, m* (qrsa)

X[ Wolpm™ o5 Jdg1 - - -dqndpy- - -dpn,
p

and as fjm*= fa;, this becomes

Tr (RU) = L . f_ :wR(qk,p»)

X[ Z wpapm*apifMi(qk)Pk)]

Pr2.m

Xdgr- - 'dQnd?r < dpa

=f+w. ) 'fﬂR(Q"’?“)f(Qk,Pk)dqy-.

Xdgudps- - -dpn=(R(qr,px))-

These results indicate that the quasi-probability
distribution is directly analogous to von Neumann’s
statistical operator. Where he uses infinite matrices as
the basis of his theory, we use functions of the real
variables (gi,p:). It is worth noting that, using the
above method to define a matrix for a function, the
matrix for the cosine bracket, (4,B), is one-half the
anti-commutator of the matrix for 4 and the matrix
for B. Also the matrix for the sine bracket, [4,B7], is
simply the commutator divided by 4 of the matrix for
4 and the matrix for B. These results serve to establish
an isomorphism between the space of functions of real
variables and the space of infinite matrices. They may
be verified by a straightforward formal calculation, which
starts from the following rule for the result of R(g.,p:)
acting on . This rule follows at once from our definition
of the matrix elements R;,.. It is

(g, - ‘Qn)=h"'f—:w- ) £:w eXpE kz::l"]k(Qk_Ek)}

X-R((Qk+fk)/2, ﬂk)\b(&)d& . 'dEndnl . 'dﬂu-

We note that this rule may also be derived from the
correspondence suggested by Weyl” by some fairly
straightforward manipulations involving the use of
Fourier’s integral theorem. Let ® be the operator
corresponding to p and  be the operator corresponding
to ¢. Let them satisfy the commutation relation
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where & is the identity operator. If

R<s,p)=% / M / M eXPE(onﬁ) Je(o,naoar,

then, according to Weyl, the correct operator is obtained
by replacing £ by @ and p by ®. In this derivation,
use is made of an identity of Kermack and McCrea®:

'io"r) (i‘r Q) (ior(?)
=exp{ — ) exp{ — J exp{ — }.
2% % P 3

Our quantum condition, (f,f)=k"f, becomes then,
in matrix language,

exp{%(awrg)

vU=U,

which is just von Neumann’s characterization of a
“pure state.” The physical interpretation in the two
cases is similar. In matrix language, it characterizes a
projection operator onto some state, while our condition
may be thought of as characterizing sort of a smeared-
out projection operator for a region of phase space. It
represents a modification of the classical delta function
which projects onto a phase-point.

IV. QUANTUM DYNAMICS AND THE
CORRESPONDENCE PRINCIPLE

We show in this section that the dynamical equation
of quantum mechanics can be derived from the quantum
condition, with the aid of the Bohr correspondence
principle. For this demonstration, it is convenient to
define a dot product as

+oo )
4 -B=f & f A(qupe) B(gr,px)
- Xdgy- - -dgudps- - -dpn.
It is easy to verify from the definitions that
[4,B]-C=4-[B,C],

and to verify, by formal integration by parts and
Fourier’s integral theorem, that

[4,B]=h{4,B},

if A is a polynomial, at most quadratic, where {4,B}
is the classical Poisson bracket.

The large-scale experimental validity of classical
mechanics tells us that quantum theory must, in some
sense, correspond closely to classical mechanics. We
have altered the classical concept of a moving point in
phase space to that of a quasi-probability distribution
which changes in time. This distribution (see Sec. II)
is imagined to be concentrated about the classical
point, so that a crude measurement will be unable to
differentiate between the two theories. To insure this

W, O. Kermack and W. H. McCrea, Proc. Edinburg Math.
Soc. 2, 224 (1931).
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correspondence, we shall use the statement which
actually seems to be given by experiments—on the
average, Hamilton’s canonical equations hold. It can
be shown, say by using the Wigner form (3") of f and
some of the properties given in the next section, and
making an infinitesmal change y, that the most general
infinitesmal change 8f which preserves the normaliza-
tion and quantum conditions is given by

af=[/se],

where g is arbitrary. Since by “the average of ¢.” we
mean the time rate of change of the expected value of
gk, we have

d af
Average (Go)=—(gx ) =qx-—.
dat at

Also
5f=51(31/01).

We must have, by the correspondence principle,
af
Bt(qk '~) =q-[ /0]
ot

=—[grogl-f
=—n{qedg} - f
=dt{qx,H} /.

Thus we see, as the above equation must hold for all
qx and py, and for any possible f, we must (outside an
arbitrary, additive constant, V,) choose for &g

dg=—Hst/k.
Thus we obtain the dynamical equation
af 1
—= ——[f H ])
a %

which is given by condition (4) of postulate Q. It should
be noted that this equation is the direct analog of
Liouville’s theorem of classical statistical mechanics.!

We see, therefore, that in this formulation, the change
in the formal structure from classical to quantum
mechanics consists in replacing the equation f= (0%)f?
by f=h"(f,f). (See Sec. II for limiting behavior of the
cosine bracket as #—0.) The quasi-probability distri-
butional formulation has the advantage that it does
not depend on the two superfluous constants, the
arbitrary phase factor and the additive constant in the
classical potential energy which appears in the standard
Schrédinger formulation. This lack of dependence on
arbitrary, unobservable constants is not only an
advantage, per se, but should be a grea: convenience in
the treatment of the asymptotic behavior in scattering
problems. Furthermore, our formulation provides a
sort of intuitive picture of what the system is doing in
phase space.
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V. FORMAL PROPERTIES

(I) One property of the quasi-probability distribution
which is easy to demonstrate is that it is uniformly
bounded (see also, Takabayasi®). In terms of the wave
function ¥{q.), we have

oo +eo 2t n
g piy=(2/M)" j exp[‘f;g.l)’ki’k]

X*(grt 3 (ge—y)dy1 - - -dyn.
By the Schwartz inequality,! we have
e +o 2% »
gt ame] [ [ lenl= 2 ]

2
Xy (git-vi) | dys- - -dyn]

><[f_:w~~-f_:wl‘l/(qk—yk)l”dyr--dyn‘,

which. as fyy*=1, implies
[ flaupi) | S (2/h).

(I1) A second property is the following one. Let us
define

+o0 +o0 2% n
fl—_]_\—;kz-:xf f exp[ E?:y:]

Xoe*(gi+y5)ee(q

where the ¢,’s are orthonormal.
Let (@i ] be a unitary transformation and let us also
define

i~ Yy -y,

Xi(g5)= kZ‘ aadi(qs),

+o 2 n
e f exp[ z:] ?:yj]
—c0 =

XXF(g+y:)X:(gi—yi)dy1- -

and

o0

fn———Z

l=-1 a0
* dy ny

then fi=fi. This means that if f represents an en-
semble composed of equal numbers of systems in NV
orthogonal states, then we get the same f no matter in
which way we make up the orthogonal states. To see
this, we expand fi1 as

o0 +00 2t =
fII——‘f f eXP[ EIPJJ':]

X Z Z au*i* (459 indmlgi— ¥}y - -

kom iml

-@Yn.
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Now, as [e,x] is unitary,

N
Y Gk Cim = Okm.

=1

Thus, by summing over m, it reduces to the definition
of fx.

(III) The third group of properties listed below
follow by straightforward, but somewhat tedious,
formal calculation directly from the definitions. They
are, however, obvious from the analogy to the density
matrix formulation with the dot product playing the
role of the trace.

[4,B] f=[f,A)-B=[B,f]-A=A-[B,f],
[4,B]=—[B,4],
(4,B)=(B,4),

(A,B)- f=(f,A)B, etc.,
[A.[B,CTH[C[4,B11+[B[C,4]]=0,
[4,(B,C)]=([4,B],C)+([4,C],B).

If fi; and f,; are orthogonal to each other, then
(firfin =9, [fwfii]=0, and, of course, [fs;f:]=0.
VI. MEASUREMENT

We are now in a position to discuss the effect of
measuremeni on a quantum-mechanical system. In the
standard Schrédinger representation, the measurement
of a quantity, R(g.,p+), leaves the system in a state
described by a y which satisfies the eigenvalue equation,

RYy=NY,

where R is the operator corresponding to R{(gx,p:). We
know that this equation is equivalent! to the extremal
condition

s((R))=0,

$(R-f)=R-8f=R-[fdg]=[R,f]-85=0,

where 8g is an arbitrary variation. Because 8g is arbi-
trary, we must have

or

[R,f]=0.

This condition generates a sequence of quasi-probability
distribution functions, fi, indexed by A, where it is
understood that several distinct fix may be given the
same name by this naming process, and

A=R- fan
We shall say that the {fa} form a “complete” set if
1=m" 3 fa- f

(conservation of probability) for all quasi-probability
distribution functions f.

uH, Jeffreys and B. S. Jeffreys, Methods of Mathematical
Physics (Cambridge University Press, New York, 1950), Sec. 10.14.
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The case of the degenerate fy (more than one f with
the same value of \) can be clarified as follows. We
know from the standard quantum theory that the ¢
corresponding to different A are orthogonal and hence
(Sec. ITT) the f, are. Further the ¥ corresponding to
the same A can be made orthogonal by the Schmidt
process. By property II of Sec. V, it does not matter
in which way it is done, since Y. fu involves equal
weights to each fox. Thus we must understand by the
above “completeness” condition that all the f are to
be orthogonal to each other, pairwise. We may now
formulate the following measurement postulate.

Postulate M.—If we have an ensemble represented
by a normalized, weighted sum & of quasi-probability
distribution functions, then the measurement of a
dynamical quantity, R(ge,px), decomposes the ensemble
into a set of subensembles indexed by the measured
value of R(gx,px). Each subensemble is represented by
a quasi-probability distribution function fi, which
satisfies the condition [R,fin]=0, and in each sub-
ensemble R(gx,pr) takes on precisely its measured value,
A. In order for a measurement to be possible, all the
conditions of this postulate must be enforceable for all
possible &.

Now by the results of Sec. ITI, we know that we can
expand any quasi-probability distribution function,
and hence any weighted, normalized sum of them in
terms of a complete orthonormal set (k*2f;;). Now if
we assume R(gx,px) measurable, the condition [R,fu]
=0 must form a “complete” set, or we would not be
able to decompose the whole ensemble. Each fu implies
a corresponding ¥», and hence we can construct a
complete orthonormal system, (k*f,,), by the method
of Sec. ITI. We note that this orthonormal system has
the property that the fu are quasi-probability distri-
bution functions, while the f\,, A» are not. Let us
expand & in terms of it. By Sec. III, it becomes

F= Z)‘ W83 * o o (QisPi)-
P

If we make a measurement, by postulate M, the f,,
A=y, are destroyed. (This results in no loss of normal-
ization as /" fa,=&x, by Sec. III, iv.) Hence a measure-
ment of R(qx,pr) transforms ¥ into

F'=3_ wan*apnfn(gepr).
IRy

We may now compute the distribution of measured
values of R(qx,p») by means of the orthogonality rela-
tions as

FR)~-FO)= %' fu-&,
0<AER

where F(R) is the cumulative distribution of R, By
2./, we mean that if there is a contribution at either
end point, we take only half of it. This is done to
adapt the function F to Fourier analysis.

GEORGE A. BAKER, JR.

However, we can proceed otherwise to obtain the
cumulative distribution (and it is a true cumulative
distribution for 3 w,|a,»|2=>0) and obtain an important
result thereby. We first obtain the standard statistical
characteristic function

© . I‘v(g:)
cw=£ ismr(222),

=0} v!
where u, is the vth moment of R, given F, computed
from the above cumulative distribution. It can be
shown that there exist functions R (gx,px) (if |y | < )
such that

w(F)=R®. §

for all & According to Kendall,® the cumulative
distribution is then

+° [1—exp(iRS/%)] (
—
o is

Fm%F@=%f S)ds.

Substituting for C(S) and equating these two expres-
sions, we see, when the appropriate interchange of
limit processes is permissible, that we must have, as F
is arbitrary by the relations of Sec. III (vi),

, 1 pr[1—exp(GRS/%)]
05%:5 an (@nr)= E»[m 1S
w (—49)* RW kP
X(Z( ; ) (q| ?))ds

Thus we see that the fy» must be constructed from the
R (q,pr). Conversely, we must have

RO (gr,pr)=h" Zx)\ ¥ fan(guspr)
all

]
=f NAF\(ge,pr), (Stieltjes integral),

A=—oo

where we define

Falgup) =k 22’ fulqupe).
0<ugA

It can be shown by use of the relations of Sec. V,
property III, that the R®™(g;,p:) satisfy the equation

R®.F=(R,R"D). &

for all &, as we would expect from the analog pointed
out in Sec. ITI. As Moyal® has shown, R =1, so that
we may use the above relation to construct successively
the R,

This result gives an explicit method of solving the
eigenfunction problem for the measurement of R, We

use the above equation to compute the R and then

12 M. G. Kendall, The Advanced Theory of Statistics (Charles
Griffen and Company, Ltd., London, 1947), Chap. 4.
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use them to compute the fn. We see that the problem
of which quantity corresponds to the »th power of an
observed quantity is equivalent to the eigenfunction
problem.

VII. SIMULTANEOUS MEASUREMENT

Two quantities R and S are clearly simultaneously
measurable if and only if postulate M can be imposed
for both at once. This means that § must be decom-
posable into a set of subensembles represented by
quasi-probability distribution functions f,,, ,-indexed by

p=R-fopee, T=S"fop,00

where [R,fsp o0 ]=[S,fones]=0, and R and S take on
the precise values p and o, respectively. We must also

have
1=h"Z fp,,”'ff
p.c

for all ¥. We now have, as before, for the cumulative
joint distribution
F(R,S)—F(0,0)=k" 2" fipoe 5.
P

0<,<R
0<,<$

An argument analogous to that given above (Sec. VI)
shows the quantity (R“S®) corresponding to the
(v,4)th moment of the above distribution is

(R(”)S(“))‘_‘hﬂ p3 P'a“fpp.n(qk)i’k)-

all (p,0)

We compute symbolically the cosine bracket

(R(”),S(“))=h2"( 2 0 fenver 20 *fon, va)

all (p,o) all (p,0)
= (R(V)S(I‘))’

where use has been made of the relations of Sec. V.
By virtue of their nature as weighted sums of the same
quasi-probability distribution functions, we see that

[R,S]-5=0

for all ¥. That is to say, if two quantities are simul-
taneously measurable, their operators commute, a
well-known result of the standard formulations.

Let us define an Nth order cosine bracket as

1
(TI)Y‘%' ) '7TN)=——

N 1all permutations

X{T1,|:Tz,( . 'yTN) °t :]}

This is totally symmetric in the T:. We see at once,
from the work of this and the previous section, that the
joint distribution of N simultaneously measurable
quantities T, - - -, Ty must be

F(Ty,---,Tn)—F(0,---,0)
=[Frl(qk:.?k);' * 'sFTN(qk:P")]'s‘F’

2205

where

Eri(ge,pr)= Z'T Seilgr,pr),

0< 7 T

[(T;,fri]=0, 7;=T; fs;

and the condition [7;,T:]- =0 must hold for all 7, %,
and . Then the expected value of any function

G(Ty,--,Tw)

with

is given by

©)= f f G(Ty- - Tw)dF (T, - T).

entire range
of the T

As we can form F(T,,--+,T~)—F(0,---,0) in an
unambiguous manner according to our above definition
for any (T'k), whether they are simultaneously measur-
able or not, we might wonder what its significance is,
if any, for nonsimultaneously measurable quantities.
Now for this case, von Neumann?® (Chap. IV, Sec. 2)
has shown that F cannot be a true cumulative distri-
bution function for all possible states of the system as
this would lead to dispersion-free ensembles, which are
impossible. We have exhibited an F which is a true
distribution, if the (7) are simultaneously measurable.
We see that the only way it can satisfy von Neumann’s
theorem .in the case of nonsimultaneously measurable
wvariables is that it must imply “negative probabilities.”
Thus we arrive at the important physically meaningful
conclusion that the F defined above is a true distribution
function if and only if the (T%) are simultaneously
measurable. This is to say, when quantum mechanics
predicts an impossible result like a “negative proba-
bility,” then the interpretation is that there is no
physically realizable experiment to measure the joint
distribution. It is worth noting that in the case T1=g¢
and T,=9p, that

d{F(g,p)]
dgdp

which is not the quasi-probability distribution function,
Nor could it be expected to be, because of the basic
impossibility of establishing an isomorphism between
a commutative and a noncommutative linear algebra.
As we have seen, it is necessary, to satisfy the measure-
ment postulate, to have the operator of the “square”
of a quantity be the square of the operator; thus, if
the operators do not commute, we are forced into
trying to establish the above-mentioned impossible
correspondence, in order to try to make a definition
which correctly gives the distribution for the simultane-
ously measurable variables also give the quasi-proba-
bility distribution for the conjugate variables $ and g¢.
We emphasize that these results are in accord with
the fact that a dynamical quantity R(gx,px) which is a

|
= Re{y(q)e*(p) exp(—ipg/7)},
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function of noncommuting variables is a separate and
distinct entity which should be denoted by a separate
symbol, R. R(gi,p:) has the property that (R)
={R(gx,px)} for any distribution; however, we do not

expect
(RY) = (R*(qr,p%)),

(R%)=(R®(gr,pw))-

In this formalation, we can correctly find the expected
value of R by using R{(gx,#x), but it is not possible,
in general, to study a function G(R) in terms of
G[R(gw,pr)]. As we have seen above, the solution of
this correspondence problem in general is equivalent to
the solution of the corresponding eigenvalue problem.

but instead

APPENDIX. EXAMPLE OF THE QUASI-PROBABILITY
DISTRIBUTION: THE HARMONIC OSCILLATOR

It is a matter of straightforward calculation®?® to
show that for the one-dimensional harmonic oscillator,
the energy eigen-quasi-probability-distribution-func-
tions are:

fn(H §)dHdb=[(— 1)/ (2rn ) 1Ln(4H/hv)
X exp(—2H/k)d (2H/hv)db,

where L,(x) are the Laguerre polynomials,’® and we
have made the algebraic change to the variables

6=tan™'(p/(2xmvq)], H= (p*/2m)+2x*mv*¢’.

The dynamical equation satisfied by f, in this example,
is the same as the classical equation. It is

of af af
—=—(p/m)—+4w*myig—.
ot dg ap

13 See, for example, P. M. Morse and H. Feshbach, Methods of
Theoretical Physics (McGraw-Hill Book Company, Inc., New
York, 1953), p. 784.
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It is also of interest to compute the generating
function,

G(s)=é(—is/h)vmvw)/(vo.

By the relations we have obtained, this is also equal to

G(s)=h X exp(—is\/B) fulg.£),

which we may compute by means of the formula for
the generating function for the Laguerre polynomials.’®
Thus

G(s)=h S exp[— ¥is(2n-+L)hv/R)(2/hv)
n=0
X (— 1) (n) Lo (4H /hv) exp(—2H /hv)
=exp[~ (¢/%) (2H /) tan($sw)]/cos(3sw),

where w=2mv.
We now obtain the various H® from G(s) by the

relation
AN
o= (—— —-—) G(s)
i 0s

and the eigenfunctions by the relation

’
s=0

400
fo=(2xk) f exp(twsn)[1—exp(iws) ](45) G (s)ds.

We obtain by differentiation
HO=1 HW=H, H®=H*~(h)?,
H®=H3—5(1h)H, etc,

which agree with what we obtain by the direct appli-
cation of the recursion relation.



244

Proc. Camb. Phil. Soc. (1964), 60, 581 581
Printed in Great Britain

The formulation of quantum mechanics in terms of
phase space functions
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Abstract. A relationship between the Hamiltonian of a system and its distribution
function in phase space is sought which will guarantee that the average energy is the
weighted mean of the Hamiltonian over phase space. This relationship is shown to
imply the existence of a wave function satisfying the Schrédinger equation, and
dictates the possible forms of time-dependence of the distribution function.

The re-formulation of established theory in terms of new prineciples and alternative
hypotheses sometimes facilitates the solution of specific problems, but chiefly illumi-
nates the structure of the theory. Such is the case with the development of quantum
mechanics in terms of the distribution function in phase space. We shall develop an
eigenvalue equation for the distribution function, which may be solved for the case of
a particle in a harmonic ocillator potential, and which has the same solution as that
given by previous authors on the basis of Wigner’s original introduction of the phase
space function in terms of wave funetions (7).

Baker (1) has shown that this wave-function expression may be deduced from certain
results for the phase space function obtained by Moyal(5) and Takabayasi (6). How-
ever, his postulated condition for a stationary (time-independent) distribution funetion
is byno means intuitively obvious. We shall deduce his results and the time-dependence
of the distribution function from the hypothesis that this function is determined by
the Hamiltonian so that the average energy is automatically constant. For reasons of
notational simplicity the discussion will be confined to a two-dimensional phase space.

We postulate the existence of a bounded (i.e. square integrable) time-dependent
distribution function f(z, p, t) such that

fjwf_: H(z,p)f(zx,p,t)dxdp = E f :J:o flz,p,t)dzdp, (1)

where F, the energy of the system, is time-independent provided H(z, p), the Hamil-
tonian, is. We seek an integral equation for f such that (1) will be automatically true.
Consider

I(x’p’t)':i%fm fm BKP%[P(""‘O')+x(ﬂ—/\)+0‘(0'/\—rp)]
- - x ¢(a) H(t,A) f(o, g, ) dr dAdo duda, (2)

where f ? Pla)dee = 1 and £ is a constant, to be identified later with Planck’s constant.
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o 7|7 repnwan=|" [ aw.o)e. e o

iy f :o f : fa' ', t) da’ dp'. (3)

We postulate that there are no intrinsically distinguished points in phase space; i.e.
any local continuous mapping of z,p to z’,p’ should leave either all points or none
fixed. These mappings are restricted to be pure translations by Brouwer’s Translation
Theorem (3). (I am indebted to Dr P. H. H. Fantham for this reference.) Thus we may

have I(z,p,t) = Ef(z, p,1), (4)
I(z,p,t) = Ef(x+a,p+b,1) (4a)

as possible local relations between I and f. In other words the relationship is chosen
to be translation invariant. We further require that if H = constant there is no
restriction onf. Thiswill be soif ¢(a) = §(a— 1), and the more general form ofidentifica-
tion (4a) is rejected.

We shall now introduce the sine and cosine bracket notation of Baker and write

or more generally

gt e =g [ [ sind ol =) +atu—2)+ 20709
x flr,A)g(p, o) dr dAdpdo,

() o) = g5 [~ o [7 052 lr=0) +atu=2 420 —70)
xflr, ) gy, o)ydrdAdudo

and employ the abbreviation
r9={" |7 tepow s daas.

The undernoted identities, which follow by formal calculation from the above
definitions (1), are quoted for convenience.

[4,B].0 = [C,A].B = [B,C].4,
[4,B]=~[B,A4],

(4,B) = (B, 4),

(4,B).C = (C,4).B, eto., [ (8)
[4, B, C1]+(C, [4, B]]+ [B,[C, A]] = 0,
[A’ (B9 0)] = ([A’ B]’ 0) + ([A’ 0]’ B)'

We may then write the condition (4) as
(H,f)+ilH,f]= 2Ef. (6)

Consider two eigenfunctions f; and f; with real eigenvalues E; and E,, respectively,
which satisfy (6). (The eigenvalues must be real since they represent the possible
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energy values of the system.) Then with the aid of (5) we may deduce the following
ti ,

Sdenons HA(fI 1) +ilfhif 1} = 2B, f}, (7)

H.{(fH) =il i1} = 2B,f % -y (8)

Let us examine how far (7) and. (8) are consistent with the assumption that equations
of type (6) hold for both (f;f¥)+4[f;f 71 and its complex conjugate, i.e.

(H{(fS D)+l S T +ILB{(Lf ) il £ 1T = 2B{(fef 1)+l f T (9)
(H{(fE [ —LF LA +iB{S 2 — L 31 = 2B{(F2f) —lF¥fL (10)

Equations (9) and (10) are consistent with (7) and (8) upon integration.
We may then label the eigenfunctions of (6) according to their eigenvalues and those
of their complex conjugates as

(L) +ilFif 71 = Ry (11)
where k is a normalization constant.
By definition F5=f (12)
Rearrangement of (9) and (10) with their complex conjugate equations yields
(H,feg) = By + E) fo5o (13)
(H, [yl = =By~ B fyy. (14)

Equation (14) has been given by Moyal (5) and is already implicit in previous work (7):
equation (13) does not appear to have been stated before.
Comparison of (7) with the complex conjugate of (8) provides the further consistency

requirement fi-ff =0 unless E =E;. (15)

Similarly, f,.f# = 0 unless f# and f¥ also have equal eigenvalues. In terms of the
notation introduced above

fa-fmj=0 unless i=j and l=m. (16)
This is the orthogonality condition for the eigenvalues of (6). (11) may be rewrititen as
(farSms) + L fiv Frns] = Efis- (17)
Then by (16) Fis- Fafong) +Fs- Lo Smsd # O
or {(FsooS ) + i fssr fal} Foms + O

by (5). Applying (16) again, we require

(Fioofa) + il o) = Fime
This is possible only if 7 = I. Thus we see that for consistency, (17) must be modified
boxead (FarSoms) FilF o Fims] = Kn Fiz- (18)
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This is the relationship which is adopted by Baker (1) as an initial postulate, in the
case where 4 = j = [ = m. Heshows that thislaw implies that f;(x, p) may be written as

2= 2K [~ yte+i)hla—y)exp 3 ouds, (19)

i.e.in the form of Wigner’s distribution function (7). The generalization to ‘ off diagonal’
functions is obvious and yields

fu(z, p) = 2K f:o Vix+y) ¥i(x—y)exp ?h—ipy dy. (20)

The orthogonality condition (16), when applied to (20) gives the usual orthogonality
requirements for the functions ¥, namely

|7 nenpenie=a, @)
The normalization of the functions i, in (20) has been chosen so that
f: Ve[ dz = 1.
This implies f:f: fulz, p)dzdp = %{

Distribution functions are conventionally normalized to have unit integral so that
they may be interpreted as probability densities: the choice K = h leads to no loss of
generality of the theory and permits the observance of this convention. These last
relations may be used to deduce the following equation for ¢ :

% f :o J :O H (:ﬁ%/ U) Y(y)expe U(xﬁ_ Y jody ~ By (@), (22)

or H(x, _? 3%) Y(z) = By (23)

This is the time-independent Schridinger equation, if 4 is identified with Planck’s
constant. It may be obtained from (22) by expanding H{}(x +y), o} in a power series
in o, integrating, and summing formally.

To complete our investigation of this formulation of quantum mechanics we shall
deduce the admissible form of time dependence for f;; from (6). Differentiating we have

¥\ . [ Fal _ 5 O
(H, ﬁ) +¢[H, 3{’] =E;+. (24)

Thus f;;/2t may be expanded in terms of the eigenfunctions of (6) with eigenvalue E.
Suppose

a

% = %Cﬁz fu (25)
Since s s

éz fz‘j = Etf;: >

fllcmfiz = chzm Jms- (26)
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In consequence of the orthogonality condition (16) ¢;; = 0 unless I = j. We may drop
the third suffix and write the consequence of choosing I = j as

Gy = (27)
and the expansion of of;/0t as g:f = Cys fis- (28)

The result of differentiating (18) and substituting (28) gives a further condition on c,;,
ie. Cutoy=¢yy (allk,landj). (29)
Put k = 1 in the above relationship: then ¢, = 0, or (9/2) f;;, = 0, i.e. the real eigen-
functions f;; are stationary. This permits the expansion of H in terms of the f,, as

H =ZE;fy, (30)
since H is time-independent and real, and this resolution of H guarantees the con-
sistency of (18). Put & = j in (29); then

Cratop =0, (31)
ie. cutel=0. (32)
Thus ¢ is pure imaginary, and must be written in the form

0 = £i(F(k)—F () (33)

in order to satisfy (29). This is as far as we can go in the determination of ¢;; without
involving some dynamical principle; we have not used the fact that ¢ is a time variable
except in supposing the independence of & and H of it. We appeal to the corre-
spondence principle to verify that the simplest non-trivial choice of arbitrary function
in (33), namely

ou = 7 (Bp—F) (34)

will do. The factor 1/% is necessary to give ¢;; the dimension of an inverse time.
Then equations (13) and (14) take the form

(H,f) = (B;+ By fus, (35)
(.11 = 552 (36)

and the second equation in the limit » - 0is ]ust the classical Liouville equation, thus
verifying (34).

Finally, as an example of the simultaneous solution of the above system we consider
the harmonic oscillator Hamiltonian

H = }(p?+2?) fw. (37
If we write Fa(x, p,t) = up(@, p)expi(k—l)wt (38)
both (35) and (36) may be written as differential equations of finite order
2 2
( x2+6p2) Uy — 422+ ¥ U+ 2(k+1—1) uy; = 0, (39)
p%’-f—xau —(b—Tyuy =0, (40)

op
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where Ej, has been set equal to (k + }) #w. These equations have the solution
Upy = 4_17r (= 1)k (U1 ) viteD g B [1-k(p) g8k—D O, (41)

where L} ¥(v) is the associated Laguerre function, v = 2(p%+2?) and tan 8 = p/x. This
solution has been obtained before, (2,4) by calculation of (20), using the known
harmonic oscillator wave functions.
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A NON-NEGATIVE WIGNER-TYPE DISTRIBUTION®

N.D. CARTWRIGHT

Department of Philosophy, Stanford University,
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Received 19 September 1975

The Wigner function, which is commonly used as a joint distribution for non-commuting
observables, is shown to be non-negative in all quantum states when smoothed with a gaussian
whose variances are greater than or equal to those of the minimum uncertainty wave packet.

The Wigner function, introduced by Eugene Wigner in 1932') 1o study prob-
lems of statistical equilibrium, has long been used in quantum thermodynamics?).
More recently, it has been introduced in quantum optics to study coherence
properties of light?), and it is currently applied in the study of plasmas*) as well.
The function serves as a joint probability density for non-commuting observables
despite the fact that it 1s known to take negative values in many states. Its use as
a probability is frequently defended by the assumption that the function will be
non-negative when employed in a way that does not violate the uncertainty prin-
ciple. Mori, Oppenheim, and Ross, for example, conjecture that the Wigner func-
tion is everywhere non-negative when integrated over regions of phase space of
the order of #3¥ %). Thus (restricting attention to one dimension for simplicity) it
is frequently supposed that

p' +A2 a'th/2

m@,9)= | [ W(p,qdpdg =0, ()

p-h2 o —F2

for all quantum states, y(g), and for all points p’, g', where W (p, g) is the Wigner
function:

W(p,q) = (1/2x) fe~ " p* (¢ — 31h) p (g + Joh) dv. @)

A result weaker than eq. (1), but of the same import wiil be proven here.

F Research supported by NSF grant GS-42681.
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Integrating B (p, ¢) in the manner of eq. (1) is equivalent to smoothing W (p,q)
around each point, (p', ¢'), by convoluting it with a density D (p, ¢) which is uni-
form in an interval of size # around p’ and around ¢’, and zero outside:

Dp@ =1, p —A2<p<p +h2;q —Hh2<q<q +Hh2

= 0, otherwise.
If instead we smooth the Wigner function with a gaussian distribution
G(p,q = (27“7110'4)—1 €Xp (‘“1)2/2G§ - q2/2o'§),

the convoluted Wigner function, W (p', ¢'), will be non-negative so long as the
gaussian is as wide or wider than the minimum uncertainty wave packet. Thus
by introducing fluctuations of the order of the uncertainty principle we can gua-
rantee a proper distribution. So we wish to prove

(Bo)*

Wel(p',q) =
c (P q) Y

” V(g — th) p (g + o)

x exp (—itp—f(p—p)/h—a(qg—q)[H)drdgdp = 0, (3)

fore, f > 0and «f < 1, where af = (%/2) (c,0,)~ .
Integrating by dp and changing variables so that x = ¢ — 374, y = ¢ + 174,
we obtain

+
Wel(p',q) = (raf) ” P*x) ()

272h?
x exp [(—/f) (3 (x + y) — ¢')*

— (') (y — x) — (y — x)?/4ph] dx dy. @
Letting

Jlu) = y*(u) exp [u? (—o/4i — 1/4PH) + u (aq'[% + ip'[F)]
and y = (1/2%) (1/8 — «), we can write [for well behaved Fw

(=fic)?

We(r',q) =
¢ 2%2h?

exp [—ag'?/f)] f ff(x)f*(y) e™ dx dy

(mho)?

= e O oA Zoy"/”‘ff(x)x" dx j Oy )

When &, 8 > 0 and «f < 1, we have y 2 0. Thus W (p', q') = 0, since cach
term in the sum is of the form y*/n! c}¢,, and is hence non-negative.
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1t is pointed out that the Wigner function f(r, p) is 2/h times the expectation value of the parity operator that
performs reflections about the phase-space point r, p. Thus f(r, p) is proportional to the overlap of the wave
function { with its mirror image about r, p; this is clearly a measure of how much s is centered about r, p, and
the Wigner distribution function now appears phyvically more meaningful and natural than it did previously.

In 1932, Wigner! associated with the quantum
wave function y(») a phase-space quasiprobability
distribution function

f(r,p)=%fds e 28/ My _ SY*U(7+ 8) , (1)

or, in terms of the momentum representative
Py =h/2 [ dr e iMy(a),

=2 [ aeet M 0¥ ip-n. (@

This Wigner “representation” has proved useful
for studying the passage from quantum to classical
mechanics and establishing quantum corrections
to classical results, and generally it enhances un-
derstanding by favoring the use of classical in~
tuition in quantum problems.?

At first sight the constructions (1) and (2) seem
rather ad hoc and devoid of any deep physical or
mathematical significance. A somewhat more
meaningful expression for f(r,p) was provided
by Moyal,® namely

Flr,p)=h" f dk fds g-ithresh/n & | ei(kﬁd»sp)/ﬁ l W,
(3)

where Rand B are the position and momentum
operators, respectively, satisfying [ﬁ,ﬁ] =1k,
The form (3) is conspicuous to statisticians:

@ |e' =R+ |4y appears as a “characteristic func.
tion,” being the expectation of the operator that
corresponds to the function e***# in Weyl’s rule
of association,*

Here we wish to point out that f(r, p) has a much
more direct physical meaning, in that it is the ex-
pectation value of the parity operator about the
phase-space point 7, p.

To show this, let us first rewrite

Flr, ) =(2/m) |1, |9, (4)

where the operator IT,, has the following three
equivalent expressions in view of (1)—(3):

H,,:fdse"""”"lr-.s)(r+s| , (5)
=fdke'm'/"|p+k)<p-kl, (5)

o [ @ [ dsexp{li/ DA -7 + s(B -},
(5")

where |7) and |p) are eigenstates of £ and B,

respectively. Let us now consider the special
case r=0, p=0, and denote II,_, ,,,=1I; we have

= fd'r | ~#)r], (6)
= f ap |p-»l, (67)
=_zlhfdk J-ds el(hﬁ‘s}"')/n. (6

From (6) or (6’) it is immediately apparent that IT
is the parity operator (about the origin): it changes
#(7) into P(—») and J(p) into I —p), or equivalently
(note that M=),

nAn=-, nfn=-b. %)

We now observe that 11,, may be obtained from II
by a unitary transformation

I,,=D(7, YID(r, p)*; (8)
here
D(’i’, p) = ei(pk-rf’)/n (9)

is a phase-space displacement operator, intro-
duced by Glauber® in connection with a different,
though related, type of phase.space representa-
tion of quantum mechanics, the coherent-state
representation. We have the actions

Dir, oY *RD(r,p)=R+v,

N 10)
D(r, p) BD(r,p)=B+p, ¢

and more generally

449
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D('V, p)-lF(R; ﬁ)D(’}’,p)=F(ﬁ+7’, 13+i7)

(F(&, P) being a power series in R and P], whence
Eq. (8), in view of (5”) and (6”) [and noting that
D(’i’, f))-l =1 =7, '-P)] .

Using (7), (8), and (10), we readily verify that

MR -N1,,=~(B-7),
Hrp(p—p)nrpz —(ﬁ _p) H

that is, II,, reflects about the phase-space point
¥,p and is thus the parity operator about that
point. Note that

(m,,2=1. (12)

The Wigner function, Eq. (4), is thus 2/k times the
expectation value of the parity operator about 7, p.
Alternatively, f(r,p) is proportional to the over-
lap of ¥ with its mirror image about v, p, which is
clearly a measure of how much y is “centered”
about v, p.

Let us now discuss some simple implications
of the preceding considerations.

We first observe that II,, has eigenvalues +1
[in view of (12)], and its eigenfunctions ¢f,, satis-
fying

m,let)=+|oz), (13)

are functions that are either symmetric or anti-
symmetric about +,p. They may be obtained by
displacing in phase-space functions of the same
symmetry about the origin, i.e.,

fot)=D(r,p)| 0%, (14)
where ¢* and ¢~ satisfy I|¢*}=2|¢*), or equiva-

lently ¢*(=7)=2¢*#), *(~p)=+Xp).
Let us define projectors P;, and P,, on the spaces
of functions symmetric and functions antisymme-

tric about 7, p, respectively:

(11)

 =4(1211,,)

= D(”: p)P*D(?’, P).l ’

(15)

where Pt=3(1+1I) projects on the space of func-
tions symmetric (antisymmetric) about the origin.
We have

(P:p)2=P:p) (16)
Pr+Py=1, (1mn
P:P“P;p":n'rp‘ (18)

Let us now separate  info components symmetric
and antisymmetric about 7, p:

ll’:w;p*‘ Yrp s (19)
where

fos) =P, |9) . (20)
By (16) we have

@12t )=t vz = llug, 2. (21)
Then by (4), (18), and (21),

For,p=@/m e l2 - 1,2 . (22)

That is, the Wigner function equals 2/% times the
difference of the squared norms of the symmetric
and antisymmetric (about »,p) parts of §. By (17)
and (21) we further have

@loy=1=llu, 112+ s, |12 (23)

This implies ||¢?,[< 1, implying in turn, in view
of (22), that f(»,p) is bounded by the values -2/h
and 2/h:

~2/h<f(r,p)<2/h. (24)

This result was previously obtained by means of
Schwarz’s inequality.® We can now be much more
specific: the lower equality in (24) is realized if
and only if  is antisymmetric about »,p, i.e., of
the form (14) (—sign), and the upper equality if and
only if ¢ is antisymmetric aboutr, p. One may, in
fact, construct y such thatthe corresponding f (7, p)
equal any preassigned value finside the interval
[-2/n,2/h]. Indeed, given any two normalized
functions ¢* and ¢~, respectively symmetric and
antisymmetric about the origin, set

[)=D(r,p)c,|o% +c |67 (25)

We then have (|11, |9) = c2 ~ ¢2 and W|¥)=c?+c2.
We thus simply require that ¢, and ¢, satisfy
(2/n){c®-c?)=fand c2+c2=1.

!E. P. Wigner, Phys. Rev. 40, 749 (1932).
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5R. J. Glauber, Phys. Rev, 131, 2766 (1963), Egs.
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We present a mathematical study of the differentiable deformations of the algebras
associated with phase space. Deformations of the Lie algebra of C* functions, defined by
the Poisson bracket, generalize the well-known Moyal bracket, Deformations of the algebra
of C= functions, defined by ordinary multiplication, give rise to noncommutative, associative
algebras, isomorphic to the operator algebras of quantum theory. In particular, we study
deformations invariant under any Lie algebra of *“distinguished observables,’’ thus generaliz-
ing the usual quantization scheme based on the Heisenberg algebra.

INTRODUCTION

The usual probabilistic interpretation of quantum mechanics contrasts with the
deterministic character of classical mechanics. The axiomatic settings of the two types
of mechanics are relatively disjoint; consequently the paradigm of quantization—and
to some extent also the reverse process of passage to the classical limit—does not
seem natural.

This situation has encouraged attempts to interpret quantum mechanics as a
statistical theory over phase space. Already in 1932, Wigner [1] introduced a phase
space distribution function, related to Weyl’s quantization procedure [2-4]. A most
interesting development is due to Moyal [5], who introduced the “‘sine-Poisson”
bracket, now called Moyal bracket, for functions on phase space. It is this bracket,

* This work was supported in part by the National Science Foundation.
*Permanent address: Physique Mathématique; Collége de France, 75231 Paris Cedex 05 and
Université de Dijon, 21000 Dijon, France.
61
0003-4916/78/1111-0061%05.00/0

Copyright © 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.



256

62 BAYEN ET AL.

and not the Poisson bracket, that corresponds to the commutator bracket of quantum
me.chapics. Essential aspects of quantum mechanics can be given a classical formu-
lation in terms of the Moyal bracket and the question thus arises whether this struc-
ture has a natural place in classical mechanics.

Recently some of us [6] studied deformations (in the sense of Gerstenhaber [7D
of _the Lie algebra N of differentiable functions on a symplectic manifold with the
Poisson bracket, in terms of 1-differentiable cochains (bidifferential operators of
order <1 in each argument). Such deformations are trivial in the flat case (manifold
R“ with the ordinary symplectic structure) but are interesting in other cases, as was
illustrated by some physical applications [6¢c]. Vey [8] studied deformations of the
algebra of polynomials (with the ordinary product) and derived, in the flat case, a
nontrivial deformation of the Poisson Lie algebra in terms of differentjable cochains
of increasing order. The Vey bracket turned out to be identical with the Moyal
bracket. Vey also demonstrated the existence of such deformations of the Poisson
bracket on general symplectic manifolds with vanishing (de Rham) 3-cohomology.
Other mathematical properties and physical applications were sketched by some of
us [9].

These developments encourage attempts to view quantum mechanics as a theory
of functions or distributions on phase space, with deformed products and brackets.
We suggest that quantization be understood as a deformation of the structure of the
algebra of classical observables, rather than as a radical change in the nature of the
observables. Incidentally, the nontriviality of the deformations throws some light on
the nontrivial nature of the correspondence principle. As will be shown in the com-
panion paper [10], our treatment of deformations of classical mechanics is a viable
alternative to conventional quantum mechanics. This suggests the possibility of
developing new methods for quantum theories, especially quantum field theories.

This article will emphasize mathematical aspects of deformations; physical appli-
cations are presented in the companion paper. In the first two sections we introduce
the notion of Poisson manifold (a collection of symplectic leaves), on which a Poisson
bracket is defined by a (possibly degenerate) 2-tensor /1, and examine an important
example (the coadjoint representation of a Lie algebra). In Section 3 we treat the
case of flat Poisson manifolds (which have connections I" without torsion and cur-
vature such that the covariant derivative of /A vanishes) and show the unicity of Moyal-
type deformations that are formal functions of the Poisson bracket. We next deal with
infinitesimal deformations of the Poisson bracket on general symplectic manifolds,
giving a simple proof of the nontriviality and making more precise the relation to
symplectic connections. In Sections 5 and 6 we determine all derivations (infinitesimal
automorphisms) of the deformed structures, both those that do, and those that do
not, depend on the deformation parameter #. In the second case the result is a finite-
dimensional Lie algebra, a fact that is key to the selection of the proper quantization
procedure for a physical system. Section 7 is concerned with the unicity of the Lie
algebra deformations. It is shown that, in the flat case, there is only one nontrivial
choice to make at each order of #2. In Section 8, we present a fairly general procedure
for constructing deformations in the case of nonflat symplectic manifolds.
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From Section 9 onward, the emphasis is on invariance of the deformed products
(which we call *-products). We believe that the classical observables (functions on
phase space independent of #) that generate symplectic transformations under which
the deformations are invariant are of special physical significance. It is therefore
natural to attempt to determine all *-products that are invariant under a finite-
dimensional Lie algebra given a priori. This problem is formulated precisely in
Section 9. In Section 10 we give some particular examples. Section 11 gives general
results concerning the construction of invariant *-products on ad*,, invariant sub-
manifolds of the dual o#* of any Lie algebra 7, including explicit calculations for
some simple cases. In the last section we introduce an important tool, the *-expo-
nential function Exp, an application from 7 to the formal power series on &7 *. This
function provides an alternative method for constructing deformations and is of
direct interest to the physical applications. We end with several suggestions for further
applications to the theory of representations and generalized Fourier transforms.

1. NoTioN oF PoIissON MANIFOLD

(a) Let I be a differentiable, connected, paracompact manifold of dimension m
and class C*. We denote by {x*} (i,j = 1,..., m) a local chart of W of domain U and
we set N = C=(W, R). A p-tensor is, by definition, a skew-symmetric contravariant
tensor of order p.

For such tensors, Schouten and Nijenhuis [11] have introduced a useful tool,
the Schouten bracket; if A (resp. B) is a p-tensor (resp. g-tensor), [4, B] is a
(p + g — D-tensor defined in the following way: for every closed (p + g — 1)-form
B we have

(A, B B = (—1)"* (A) di(B) B + (—1)* (B) d i(4) B (1-6)

where i( ) is the interior product. For p = 1, [4, B] = #(4) B, where .Z is the Lie
derivative operator. We have

[A, B] = (_1)pq[B, A] (1'2)
Moreover, if C is an r-tensor, we have the pseudo “Jacobi identity”
S(—D>[[B,C}, 4] =0 (1-3)

where .S is the summation over cyclic permutations. An elementary calculation
gives for the components of [4, B], on the domain of an arbitrary local chart

1 kpr-Epiq tdgre -7, Ty o7,

—1)? s wee] Fyeved
+ p!((q = YT Sty B O AT (1-4)

where 8, = 8/ox* and where ¢ is the skew-symmetric Kronecker indicator.

[4, B+ i =

595/111/1-5
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(b) Introduce on W a 2-tensor A and, on the space N = C=(W, R), the bracket
{ , } (generalized Poisson bracket) defined by:

{u, v} = i(A)(du A dv) = A(du, dv), u,veN. (1-5)

If u, v, we N we have
S{{u, v}, wy = $i({4, AD(du A dv A dw) = A, A)du, dv, dw).

DERINITION 1. A structure of Poisson manifold is defined on a manifold W of
dimension m by a 2-tensor A such that [A, A] = 0. The Poisson structure is called
regular if A has constant rank 2n (A™ s 0, A"+l = 0, everywhere); in this case
h = m — 2n is called the codimension of the manifold.

For a Poisson manifold (W, 4), (1-5) defines on N a Lie algebra structure, the so-
called Poisson Lie algebra.

(©) A symplectic structure is defined generally on a manifold W of dimension
2n by a closed 2-form F of rank 2n. We denote by u: TW — T*W the isomorphism
of vector bundles defined by pu(X) = —i(X)F; this isomorphism is extended to the
tensor bundles in a natural way. Let / be the 2-tensor w=X(F) of rank 2n; the Poisson
bracket of (W, F) is defined by (1-5) and we have [4, A] = 0. A symplectic structure
is nothing other than a regular Poisson structure (W, 4) of codimension 0. Moreover,
if A is a p-tensor, we have

W(lA, 4D = du(A). (1-6)

It is well known that there are, on a symplectic manifold (W, A), atlases of canonical
charts {x*} = {x*, x*} (« = 1,..,n;& = o + n); for such a chart, the only non-
vanishing components of A are

A8 = _ffie = 1,

(d) Let (W, A) be a regular Poisson manifold of codimension # = 0; /A defines
on W by A¥w, = 0 a Pfaffian system which 1s integrable and so a foliation of W of
codimension 4. The restriction of A to each connected component of a leaf deter-
mines on this manifold a structure of symplectic manifold. Thus we have the
following [12]

PROPOSITION 2. A regular Poisson manifold admits a foliation of codimension h
by symplectic manifolds. There exist on (W, A) atlases of canonical charts {x*, x} =
N x x* A=1,.,h a=h+ l,..,h+n, &= a-+ n) such that the only non-
vanishing components of /A are

AE = 5 = ], (17

In particular, A** = O and x* = const along a leaf.
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More generally, there are on the Poisson manifold (W, 4) atlases of charts {x}
such that the components of /A in the charts are constant. Such a chart is called a
natural chart for the manifold.

(e) A Poisson connection (resp. symplectic connection) I' on the Poisson (resp.
symplectic) manifold (W, A) is a linear connection without torsion such that V4 = 0,
where V is the operator of covariant differentiation defined by I. If I'}, are the usual
coefficients of a connection I' in a natural chart {x}, introduce the quantities I'#* =
AifgrmDt - I'is a Poisson connection if and only if the I'#*s are completely symmetric
for each natural chart. It is easy to see that a regular Poisson manifold admits an
infinity of Poisson connections; for a symplectic manifold the difference between two
symplectic connections is deduced from a completely symmetric contravariant tensor
of rank 3.

2. EXAMPLE OF POISSON MANIFOLD: COADIOINT REPRESENTATION OF A LIE ALGEBRA

(a) Let & be a Lie algebra of dimension m over R, s7/* the dual vector space
of &7, { , > the bilinear duality form. Denote by {L4} (4 = 1,..., m) a basis for </
and by {A,} the dual basis for &7*; then

(L4, L7 = c&L°
where {CZ2?} is the structure tensor of the Lie algebra «7. The Jacobi identity can be
expressed by
SC5°CE” =0 @-1)

where § is the summation over cyclic permutations of (4, B, C). Denote by £4 the
components of £ € &/* and introduce on &/ * the 2-tensor /1 defined by

Aa, b) = <&, [a, b)) . A% = CE¢C. (2-2)
We have

i[/-l’ A]ABC — SADAaDABC _ (SCgACgC) fE-
It thus follows from (2.1) that A satisfies
[4,4] =0 (2-3)

and defines on 7* a Poisson structure.

Conversely, let V be a vector space of dimension m and suppose that we have on
V a 2-tensor A satisfying (2-3) and depending Jinearly on the vectors £ V. We
deduce from 4 a tensor C which can be considered as the structure tensor of a Lie
algebra defined on the dual space V* of V.

For (o/*, A) we denote by 2r(§) the rank of A at £ € &*, and set r = Max r(§),
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£ e 7*. The set of points £ such that r(£) = ris an open submanifold W of =/*, the
complementary set of which in &7* is a cone; the restriction of A to W defines on
W a structure of regular Poisson manifold.

(b) Let G be a connected Lie group having &/ as Lie algebra; G acts naturally
on &* by its coadjoint representation Ad*;. We recall some well-known facts
concerning the Lie algebra ad*«” of the group Ad*G. Let a € & and exp(ta) the one
parameter subgroup of G defined by a. The action of this group on £ o/* gives
&(r) = (Ad* exp(ta)) £. It follows from the definition of the coadjoint representation
that, for each b € o7,

<§(t)’ b> = <§$ Ad exP(—ta) b>
Differentiating with respect to ¢, we obtain at ¢ = O:
dé(®)]dt, by1g = <&, [a, b (2-4)

We deduce from (2-4) the map a € o/ — *a € ad*s7, where *a is the linear vector
field on s7* given by

*at = CB4¢Cay = A%y . (2-5)

This map is a homomorphism of Lie algebras admitting as kernel the center of /.
The tensor field A on &/* is invariant under the Lie algebra ad*«/; this is a direct
consequence of the Jacobi identity.

(c) Choose a point £ of &* and consider the linear map v,: ae o
*a(§) € Too/* We have

(ve(@)* = AP4(§) ap .

We obtain a field of vector spaces H,; = v,(o/) defined by the values at £ of the
elements *a & T,o/*. We have

dim H, = rank of A(¢§) = 2r(¢),
dim Ker v, = m — 2r(§).

An element b e o/ is in Ker v, if and only if A48(£) b, = 0. An element { of H;
satisfies, for each be Kerv,, <{, ) = 0 and conversely. We see that A(€) can be
interpreted as a 2-tensor on H, of rank 2r(§).

(d) Let M(&,) be the orbit through £, € o * of the coadjoint action of the group
G; M(&,) is a connected manifold imbedded in &/*. The rank of A is constant along
M(&,) and the tangent space T M(&,) at each point £ € M(£,) is nothing other than
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H, . Therefore M(¢,) has even dimension 2r(&;) and the orbits depend only on the
Lie algebra o7 and are independent of the choice of the group G.

Let U be a domain of &* such that M(&) N U # 2. Introduce a local chart
{8, &% (@ = 1,..., 2r(£,)) of oZ* with domain U such that M(&,) is locally defined
by £ = 0. For £ e M(¢,) N U, we have in this chart 44X£) = 0 and the restriction
of A to M(&,) defines a 2-tensor AM(EO) of rank 2r(&,) on M(£,) with components
{A%}. We deduce from (2-3):

[AM(E(,) y AM{;,,)] =0

and the 2-tensor A.w(so) defines on M(&,) a symplectic structure.

3. CoMPOSITION LAW *3 AND BRACKET P, FOR A FLAT POISSON MANIFOLD

(a) A flat Poisson manifold is a regular Poisson manifold that admits a Poisson
connection without curvature. Let (W, A) be such a manifold and define the covariant
derivative V in terms of a Poisson connection without curvature; we introduce the
bidifferential operator P7, of order r in each argument, defined by the following
expression on the domain U of a chart {x%}:

Pu, vy = AWV oo AV, u V. (3-1)

We set P%u, v) = uz. For r = 1, we obtain the Poisson bracket P, with PYu, v) =
{u, v}; P*(u, v) is symmetric if r is even, skew symmetric if » is odd.

Let E£(NV; A) be the space of the formal series in A € C, with coefficients in N. Given
a formal series f(z) with constant coefficients, such that f(0) = 1, we substitute
P for z' in the development of f(Az); we obtain a bilinear map (v, v)e N X N~
u x, v e E(N; X). This map can be extended in a natural way to E(N; A). If

k4

f2) =3 alz’jr!), ap=1,

r=0
we have
usr =Y Mafr) Plu,t)  (u,reN). (3-2)
r=0
This defines a_formal associative deformation of the usual associative algebra defined
on N by u, v+~ uv if we have formally:

(s 0) s, w = ux,(v*w (u,v,we N) (3-3)
We obtain immediately:
s )smw= Y X Y (aa,fr!s!) P (P(u,r), w)

=0 r+a=t
r.530
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and

ux (v*w) = i ALY (a.a,/rt sY) PT(u, P, W)).

(=0 T4a=t

We search for functions £ such that (3-3) is satisfied formally, that is
Tt(u’ v, W) = Ui(ua D, W) (t = 0, ]:'--) (3'4)
where we have defined:

T, v, w) = 3. (aa,r!s!) P(P¥u, v), w),

7+ gt

Uy, v, w) = 3, (aa,/r! st) P(u, P*(v, w)).

r+gmt

We obtain, taking into account the properties of the connection:

P"(u, P’(U, W)) —_ Aflil ven A{r‘r/]_klll v ARl Y,

11...1',_”

ks 7
r
X Z (r) le...j',kl...k.v Vj',H...j,zl...l‘W.

/=0

It follows that

U, v, w) = 3 (@_safr'tst (¢t —r — ) A8 o flediafalh . fhdde

gt
X V,-l...,-‘__u V,l...,,,kl...k,v er,+l...j‘_'ll...l'M‘. (3-5)

We obtain similarly:

T, v, w) = Y (@t st (@ — 1’ — ) AV oo fle-dema gl o iy

r’+agt

%X V.

. +1-‘-i¢_,k1---k,u V{l...,‘r,ll...l'v le_,,j‘_'w_

It follows by exchange between r’ and s:

T(u, v, w) = z (Gpyrapr' Y s) (t — 1 — §)) AW e Ale=rTemr glals o gleler
rregt

x V; V;

"1 n+1""'e—rkx'"krvl't—r'kx"‘kf'u Vi v V;

w. (3-6)

1eeriglyeeeTes 1T

Tt follows from (3-5) and (3-6) that (3-4) is satisfied if and only if
Ay _s@s = Qt_p Ay (rl +s<t=0,1, 2:---)- (3'7)

Fort = 0, 1, we obtain only identities; the coefficient g, is arbitrary and we can take
a, = 1 by a linear change of the variable A. For ¢ = 2, (3-7) gives a, = 1. We deduce
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from (3-7) by induction that necessarily a, = 1 for each z. Conversely, if such is the
case, (3-3) is satisfied. We have thus obtained:

Tueorem 3. If (W, A) is a flat Poisson manifold, there is only one formal function
of the Poisson bracket (up to a constant factor and a linear change of variable) that
generates a formal deformation of the associative algebra defined on N by the usual
product: it is the exponential function.

Symbolically, we can write this deformation, for instance,
u %, v = exp(AP)(u, v). (3-8)

Since the composition law (3-8) is associative, the bracket defined by (u *, v — v *, 1)
satisfies the Jacobi identity. We are led to consider the bracket:

X){exp(AP) — exp(—AP)}u, v),
that is:
AL sinh(AP)(u, ©) (3-9)

which can be written:

[w, v}, = 3. (v/2r + 1)) Prr-(u, ) (3-10)
=0
where we have set v = A% The first term of (3-10) is P(u, v). We see that (3-9) or (3-10)
defines a formal deformation of the Poisson Lie algebra N.

(b) Let (W, A) be any regular Poisson manifold. Consider the Chevalley
cohomology of the corresponding Poisson Lie algebra N; it is the cohomology,
with values in N itself, defined by the adjoint representation: a p-cochain is an alternate
prlinear map of N? in N, the 0-cochains being identified with the elements of N. The
coboundary of the p-cochain C is the (p + I)-cochain &C given by

0C(y »..., up) = (1/p) €7 Mty s Ctha, sores )}

b4

— (1/2(p — 1)) &7 Clng, i}y Wiy eens ) (3-11)

»

where 2, € N. We note that the space of the 1-cocycles of N is the space of the deri-
vations of N; the space of the exact 1-cocycles is the space of the inner derivations.

A p-cochain C is called local (support preserving) if, for each u; € N, such that
#,y = 0 on a domain U, we have C(uy ,..., uy) |y = 0. If C is local, 8C is local.
We obtain thus the so-called “diagonal complex™ in the terminology of Gelfand-
Fuks. A p-cochain C is called d-differentiable (4 > 1) if the cochain is local and if its
Testriction to each domain U of W is a d-differentiable p-cochain of N(U) = C=(U; R)
in a clear sense. Such a cochain is defined by a multidifferential operator of maximum
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order d. If C is d-differentiable, &C is also d-differentiable. We have proved [12]
the following proposition (see Section 6b for the symplectic case):

PROPOSITION 4. Let (W, A) be a regular Poisson manifold. If C is a local 1-cochain
of N such that @C is a d-differentiable 2-cochain, then C is itself d-differentiable.

‘We note that if (W, 4) is symplectic and if 8C is null on the constants, we have
C(1) = constant.

(¢) We come back to a flat Poisson manifold (W; A). Given a formal series
f(z) with constant coefficients, without constant term, we substitute PT for z7 in the
development of A-Yf(Az), where Pr is defined by (3-1). We obtain a bilinear map
N X N — E(N; A) which is skew symmetrical only if fis odd. If

f@) =3 @f@r+ DYz (g = 1)

r=0
we have:

2

Pu, v) = P(u, v;v) = Y v(a,/(2r + 1)) PPy, v) v=2). 312

r=0
We search for functions f such that (3-12) determines a formal deformation of the
Lie algebra N; (3-12) satisfies formally the Jacobi identity if and only if, for ¢ = 1, 2,...:

D, = Y aakE,,=0

ria=tir, 30

where, for u, v, we N,
E, (u, v, w) = S(1/@2r + D25 + 1)1) Pr+(P2e+1(y, v), w).

Introduce the Jocal Chevalley cohomology of N. For t = 1, D; = 0 expresses only
that P3 is a 2-cocycle for this cohomology and the coefficient a, is arbitrary. We can
take g, = 1 by a linear change of the variable v. We obtain by an argument similar
to the argument of Section 3a that D, = 0if and only if @, = 1 for each z. We have thus
determined the required formal deformations of the Poisson Lie algebra N.

Consider the 2-cocycle P* which corresponds to the term linear in v. If this cocycle
were exact, it would be the coboundary of a local 1-cochain which would be necessarily
3-differentiable, according to Proposition 4. But it is easy to see that such a coboundary
has no term of bidifferential type (3, 3). More generally, it is possible to prove in
the same way that for a flat Poisson manifold, the second space of local cohomology
of N has the dimension 1; P3 defines a cohomology 2-class 8 which is a generator for
this space. We have proved:

THEOREM 5. If (W, A) is a flat Poisson manifold, there is only one formal function
of the Poisson bracket (up to a constant factor and a linear change of variable) that
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generates a formal deformation of the Poisson Lie algebra N of the manifold: it is the
sinh function. The corresponding deformation is nontrivial even for the order 1.

Thus we obtain only the deformation M(u, v; ¥ = X%) given by (3-9), which is
therefore nontrivial. It is remarkable that for A = i%/2, we obtain a bracket given
many years ago by Moyal [5]. We often suppress the mention of the variable v and
call M(u, v) the Moyal-Vey bracket of the flat Poisson manifold (W, 4, I'); this
bracket depends on the choice of the flat connection I. (For W = R? and I" = 0,
the unicity of the sine-bracket as a function of P has been noticed in 1964 by C. L.
Mehta).

(d) Consider a general symplectic manifold (W, A) and a linear connection
such that VA = 0. We introduce the bidifferential operators P defined by:

P, t)iy = AWt - A ¥ ST (u,z € N) (3-13)

lJr

and set

us o=y (Nrl) P(u v). (3-14)
r={
If (3-14) is limited to the order 2, we see that the associative property (3-3) is satisfied
up to the order 3 if and only if ¥, ,i,4 1s always symmetric, that is if I' is without torsion.
If (3-14) is limited to the order 3, then (3- 3) is satisfied up to the order 4 if and only
Vn Y is completely symmetric, that is if I" is without torsion and curvature (flat
symplectic connection). In this case (3-14) satisfies (3-3) to all orders.

4. DEFORMATIONS OF THE POISSON LIE ALGEBRA OF A SYMPLECTIC MANIFOLD

(@) Consider a symplectic manifold (W, A) with an arbitrary symplectic con-
nection I" (without torsion, but with curvature). We denote by F the closed 2-form
of the manifold. If {I7;} are the usual coefficients of the connection I" in a natural
chart {x*}, we introduce the quantities I';;, = F; I}, which are completely symmetric.
If ue N, we denote by X, , for simplicity, the corresponding Hamiltonian vector
field (X, = p~Ydu)); L(X,) " is the completely symmetric covariant 3-tensor
defined by means of the Lie derivative of the connection I by the vector field X, .
We have locally for a natural chart:

(x) I iriyi, = © — SART, eii Crigh — AF el syy1, @ “-1)

iyigiy¥
If T'is a completely symmetric covariant 3-tensor, we have:

(Z(x,) T)ip‘,t, = _SAszkili, 511;,” — AK 3ka1i,i, Eu. (42)
Consider the 2-cochains S, defined by:

Sl"a(”’ z:)I‘U = AilhAidﬁAﬁﬁ(g(Xu) F)!'lle'a ('g(Xt) P)J':[J':f: - (4.3)
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In the special case when I'is fiat, S, coincides with P%. In the general case, we deduce
from Xu» = [X,, X,]:

SSH(P(, v), w) = SAMABAL(X, , Xo]) Dy, (LX) Dsps, -
On the other hand, we deduce from the properties of the Lie derivative by X,, :

SP(SF(u, v), w) = —SAV NN LKL (X)) D)ty (LX) Dhsgs,
— SAMAPAINL(X,) T)yipg0, (LX) LX) Ty,
It follows that:

SP(Sr(u, v), w) = —SAWA DA L([ Xy, Xo) Dy, (LX) Dgygys,
and thus
SSA(P(u, v), w) + SP(S(u, v), w) = 0.
According to (3-11), this means that
oSt =

and Sy is a 2-cocycle for the considered cohomology of N. The same argument as
for the flat case shows that the 2-cocycle S;2 is nonexact.

(b) Let T be a completely symmetric covariant 3-tensor. We can associate to
the 3-tensor 7 and to the symplectic connection I' the second-order differential
operator A, given by:

Ar(@©) = AAPABT (LX) Thigy, (©EN)
and the third-order differential operator By given by:
Br(v) = ABABANST, (LX) Dy, @ EN). (4-4)
The coboundary 9C of a 1-cochain C is given by:
oCW, v) = L(X,) Cv) — LX) C(w) — C({u,v}))  (w,veN). 45
We deduce from (4-5):
0A4r(u, v) = 24NN L (X ) D tytsty LX) Tisasy
and:
2B r(u, v) = AAVAI(LX,) T)igigs, (LX) Dy,
— (LX) Diigs, (LX) Djasy): G



267

DEFORMATION THEORY AND QUANTIZATION, I 73

PROPOSITION 6. The cohomology 2-class B defined by the 2-cocycle Sp* does not
depend on the choice of the symplectic connection I'.

Proof. Consider two symplectic connections I" and I and take for T the 3-tensor
defined by the difference between the two connections. We obtain:

8% — S:Hu, v) = AVANAIYL(X,) Thiyiiy (LX) Dy,
+ (LX) Dijigiy (LX) Dyt
+ AP APAI LX) T)iyiriy (LX) Tty -
Therefore we have:
S} — S® = o(Br + 34r) C))

and the cohomology class of S/? is independent of the choice of I'.

(c) ProrosiTioN 7. Let Q° be a 2-cocycle belonging to B, defined by a bidiffe-
rential operator of maximum order 3 on each argument, null on the constants. There
exists a unique symplectic connection I" such that

Q3 = S+ 2K 48)

where K is a differential operator of order <2.

Proof. Let I'" be an arbitrary symplectic connection; 0% — S%. is exact and,
according to Proposition 4 of Section 3b there is a differential operator C of order <3
such that:

0 — st =¢C.

Consider the part of order 3 of C; this part is defined by a completely symmetric
contravariant 3-tensor T, such that, in a natural chart {x*}:

Clu) = T3 8 g, u + -

This tensor defines, by means of u, a symmetric covariant 3-tensor still denoted by T.
The terms of order 3 in 2C can be written:

eC(u, v) = —3AMTY(E, ; u v — Eqipt dg)

- A% akT{li:ia(aili,i U o — aili,i,v o) +- - 4

Let Br(v) be defined locally by:
Brv)iy = TP LX) Tt
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and consider the terms of order 3 in B (i, v). It follows from (4-1), (4-2), and (4-6)
that we obtain the two first terms on the right-hand side of (4-9). We see that
0% — S, — OBy is an exact 2-cocycle defined by a bidifferential operator of maximum
order 2. We are led to introduce the symplectic connection I such that the difference
I' — I' is defined by the 3-tensor T. It follows from (4-7) that %, — /3 + 0B, is
an exact 2-cocycle defined also by a bidifferential operator of maximum order 2.
The same is true for Q® — S;3, and the connection I is a solution to our problem.
Conversely we will see in Section 5 that 8B is a bidifferential operator of maximum
order 2 if and only if T = 0. It follows that the symplectic connection satisfying (4-8)
is unique.

(d) Consider a symplectic manifold (W, 4) such that the third de Rham
cohomology space H3(W; R) of the manifold is null; this cohomology corresponds
to the homology with compact supports. Vey (8] has recently proved, by a long and
fine study using Gelfand-Fuks results, the following

THeOREM 8 (Vey). Let (W, A) be a symplectic manifold such that HY(W; R) = {0}
There exists a formal deformation of the Poisson Lie algebra N-

. 27+ 10
O, v; v) = Z,OV (2, + Nt 0+ u, v) (w,veN) (4-10)
where the 2-cochain Q*~' is defined by a bidifferential operator of order (2r + 1) on
each argument, null on the constants and for which the principal symbol coincides
with the principal symbol of P?+1,

In particular, Q' = P and Q3 belongs to the class 8 defined in Proposition 6. We say
that such a deformation is a Vey deformation of the Poisson Lie algebra or thatitisa
Jormal Vey Lie algebra. It is not known if the condition H3(W; R) = {0} is necessary.
General explicit forms for Q2+1 (r > 1) are not known.

5. DERIVATIONS INDEPENDENT OF v OF A VEY LIE ALGEBRA

The Lie algebra of the infinitesimal automorphisms of an arbitrary Lie algebra is
given by the Lie algebra of the derivations.

(a) Concerning the Poisson Lie algebra N, we recall that a derivation D is an
endomorphism D: N — N such that, for any u, v € N, we have:

{Du, v} + {u, Dv} — D{u, v} = 0 (5-1)

that is, a0 = 0. We note that we have for D no locality, continuity, or differentiability
assumption.

A vector Z defines a symplectic infinitesimal transformation (i.t.) of (W, F) if
ZL(Z)F = 0; we denote by L the Lie algebra of the symplectic i.t.; Z defines a con-
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Jormal symplectic i.t. if $(Z)F = aF, where a is a scalar; if dim W > 2, a is
necessarily a constant. In all cases, we denote by L¢ the Lie algebra of vector fields
Z such that there exists a constant k(Z) for which:

LZYF+KZ)F=0 (5-2)
or

L(2Z)yA = KZ)A. (5-3)

If Fis nonexact (in particular if W is compact), L¢ coincides with L. If F is exact,
L is the commutator ideal of L¢ and dim L¢/L = 1. Avez and Lichnerowicz [13]
have proved the following:

THEOREM 9. Let (W, F) be a symplectic manifold and N its Poisson Lie algebra.
If W is noncompact, each derivation D of N is given by L(Z) + k(Z), where Z € L*.
If Wis compact, each derivation D of N is given by:

Du=.‘?(Z)u+c[ un
Jw

where Z e L, ce R, and % is the symplectic volume element; these are nonlocal deri-
tations (for ¢ = 0).

We suppose now that W is noncompact. The results concerning the compact case
are similar, since it is possible to prove that the nonlocal derivations do not appear
in the following study.

(b) Consider an infinitesimal Vey deformation of the Poisson Lie algebra of
the symplectic manifold (W, A)

O:(u, v;v) = P(u, v) + (v/3!) 0%y, v) (5-4)
where Q2 is a 2-cocycle satisfying Proposition 7; we have
3 = 8§24 0K (5-5)
where I is a symplectic connection and where X is a differential operator of order <2.
An infinitesimal automorphism D —independent of v—of the bracket (5-4) is defined
by an endomorphism D: N — N such that, for every 4, v € N and v € C, we have:
0.(Du, v) + Q,(u, Dv) — DQy(u, v) = 0. (5-6)

The space of these infinitesimal automorphisms admits, for the natural bracket of
the endomorphisms, a structure of Lie algebra. For v = 0, we obtain 8D = 0;
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that is, D is a derivation of the Poisson Lie algebra. It follows from the above theorem
that necessarily

D=%Z)+KzZy (Zel9 (5-7

and (5-6) is then reduced to
03D(u, v) = Q3 Du, v) + Q%u, Dv) — DQ¥u,v) = 0. (5-8)
(¢) Consider the differential operator X of order 2 introduced in (5-5). This

operator is defined in terms of the connection I" by a symmetric contravariant 2-tensor
H, a vector J, and a constant ¢ so that, on the domain U of a chart, we have:

K@) |y = H®Vu + J*V,u + cu. (5-9)
Here ¢ is a constant since ¢K is null on the constants (as noticed at the end
of Section 3b).
We obtain easily according to the Ricci identity

3K(u, v)lU = A¥ V,-H"’(Vklu le] —_ V;"LU V,u) bt A”H"‘(Vk,-u Vuv —_ V;"'U V”u)
- /linsz{,m(V,u VjU —_ V,U V,u)
F AV — AV IV u Vo + cA¥ Vu Vo (5-10)

where we have introduced the curvature tensor of I,
We are led to evaluate, for D = Z(Z) + k(Z) (with Z e L°):

Ez(u, v) = 0K(Du, v) + 2K (u, Dv) — DaK(u, v);
that is:
E,(u, v) = 0K(Z(2) u,v) + oK(u, L(Z)v) — L(Z) 2K (u, v) + k(Z) oK(u,v). (5-11)

‘We have the following lemma:

Lomma 10. The bidifferential operator Ez defined by (5-11), where ZeL®, is
of maximum order 2 on each argument.

Proof. Computing (5-11) with the help of (5-10) and the identity
(F(2) ViV, — ViV E(2) u = (£(2) DV Y

we see immediately that all terms in Ez of order >2 in each argument cancel out, and
the lemma is proved.
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(d) We have

8D(w, 9) = S;AL(Z) 4, 9) + S, L(Z) v) — L(Z) ST, v)
+ K(Z) S, ©) + Ext, o). (5-12)

Introduce the symmetric covariant 3-tensor T = %(Z) I" and the differential operator
Br corresponding to I” and 7 defined in (4-4). It follows from (5-12) that:

63D == —EBT - 4k(Z) S_["s + EZ (5"13)
and (5-8) can be written, on the domain U of a natural chart:
AN NP LX) Tissyty (LX) Dhisyg, — (LX) Dy (LX) Thigiyg,
+ 4k(ZXL(X.) D)iyiyr, (LX) D)ygy,y — Ez(u, v) = 0. (5-14)

Let x be a point of U and introduce an element u of N admitting a null 2-jet at x.
We have at this point:

EX)T)x) =0, (LX)D)I(x)=r

where we can choose arbitrarily the symmetric 3-tensor = related, according to (4-1),
to the third derivatives of u at x. Lemma 10 gives E;(4, v)(x) = 0 and we deduce
from (5-14):

Tili’ia[(g (X0 T)tlf,{; + 2K(ZXZL(X.) P)t,i,f,](x) = 0.
It follows that necessarily, for every ve N
LX)T + 4k(Z) L(X,) I' = 0. (5-15)
If we take for v an element of N admitting a null 2-jet at x, we obtain k(Z) = 0.
Therefore Z belongs necessarily to the Lie algebra L; (5-15) gives the result
LX)T =0 (5-16)
for every ve N.
Consider an element ve N such that (8,2)(x) = 0, (8w)(x) being arbitrary.
According to (4-2), we have at x:
(CrTg4y)(x) = 0

and the components T} ;, of T are constant on U. We shall raise indices in T with
the help of A.

If v is now a function such that at x:

(GroXx) = Ti



272

8 BAYEN ET AL.

where = is an arbitrary symmetric 2-tensor, (5-16) gives at x:
Tktszl:ia + TkigTiL;il + TkiaTzﬁi, = 0. (5‘17)

Choose for = a tensor which has as only nonvanishing component r,; = 1; take
iy = 1 and successively i, =iy = 1; i, =1, i3 # 1; i3 % 1, iy % 1. We obtain
T}z,‘3 = 0 for arbitrary indices i,, i, ; 1 being an arbitrary index, it follows T = 0;
that is,

LZ)T =0. (5-18)

Z preserves the connection I'. In particular Z preserves separately S;* and XK. A
similar argument shows that if Z preserves 4, I', and also 8K, we have with the repre-
sentation (5-9)

L2Z)H =0 (5-19)

and
[Z(Z)J,4] = 0. (5-20)

The vector field #(Z) J defines a symplectic i.t.

We note that the same argument proves also the unigueness of the connection defined
by Proposition 7.

We denote by Lg, the symplectic subalgebra of the Lie algebra of the affine infini-
tesimal transformations corresponding to the connection I'. Let L(Q,) be the Lie
algebra of infinitesimal automorphisms (independent of v) of the bracket (5-4) (Vey
infinitesimal deformation). We have proved:

THEOREM 11. The Lie algebra L(Q,) of infinitesimal automorphisms of the bracket
O, which do not depend on v is a subalgebra of the algebra Lg, of the symplectic affine
infinitesimal transformations of the symplectic connection I" associated with the 2-cocycle
Q3. Therefore L(Q,) is finite dimensional.

We note that if Q% = Sp%, we have L(Q)) = L;, .
For a Vey Lie algebra, with the bracket Q given by (4-10),it follows from Theorem 11
that:

COROLLARY 12. The Lie algebra L(Q) of the derivations independent of v of @
formal Vey Lie algebra is finite dimensional. If (W, A, I') is a flat symplectic manifold
and M the natural Moyal-Vey bracket given by the sine function, we have L{M) = Lg,.

(¢) Remarks. Invariance of a Vey deformation.

(i) The Lie algebra of vector fields Z (infinitesimal geometric transformations
of the manifold W) which do not depend on » and preserve the bracket Oy is also
L(Q,) [9]. (We note that in this case necessarily Z e L.)

(i) If we now look for vector fields Z, = Z, 4 vZ,;, where Z, and Z, are
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vector fields independent of v, which preserve an infinitesimal Vey deformation Q,
given by (5-4), we see immediately that Z, e L(Q,) and the invariance of Q; (in our
notations) reduces to:

(4, [Zy, 71+ Z))(du A db) = 0:

ProproSITION 13. A wvector field Z, + vZ, preserves an infinitesimal Vey defor-
mation Q, if and only if Zye€ L{Q,) and [Z,,J] + Z, e L.

(iii) More generally. if we look for a formal series

x

Z,=5 vz, (5-21)

r=0

preserving formally a Vey deformation Q given by (4-10), we need more information
on the 2-cochains Q**1. In the case of a flat symplectic manifold, (5-21) will preserve
formally the natural Moyal-Vey bracket given by (3-10) if and only if, for every »,
L2Z)A=0=L(Z,)T, that is Z,e Ly, . For instance, in the case W = R2»
with the usual connection and the usual Moyal bracket, Z, belongs to the algebra
of affine symplectic transformations with coefficients in the field of formal series in v.

(iv) Still more generally for a flat Poisson manifold W, if u, € N has an inverse
(u,*)~* with respect to the *, product (3-8), v u, *, v ¥, (4, *)~* is an automorphism
of N(W)depending on A. This leads us to the next section.

6. DERIVATIONS DEPENDING ON v OF A VEY LIE ALGEBRA

Consider linear maps D, : N — E(N; v) defined by means of the formal series:

D, =3 v, (6-1)

=0

where D, is an endomorphism of N independent of v.
Let us look for derivations D, of a formal Vey Lie algebra corresponding to a
bracket defined by (4-10); we will have formally, for every u, v € N:

O(Du, vy v) + Q(u, D,v; v) — D,Q(u, v; v) = 0. (6-2)

(a) Taking the term of (6-2) independent of v, we see first that D, is a derivation
of the Poisson Lie algebra. There is a Z, = Z € L° such that

D, = L(Z) + k(2).
For the term linear in », we obtain with the above notations:
oD, + (1/3Y) 8,0 = 0. (6-3)

595/tx1[1-6
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If we set T = #(Z) I', we deduce from (5-13) that (6-3) can be written:
8D, — (1/3\)(@By + 4k(Z) St* — Ez) = 0, (6-4)

where E is a bidifferential operator of maximum order 2. It follows from (6-4) that
2D, is a bidifferential operator of maximum order 3. Therefore D, is necessarily a
differential operator of maximum order 3 and 2D, has no terms of bidifferential type
(3, 3). This fact implies k(Z) = 0. We obtain

LEMMA 14. We have necessarily Dy = £(Z,), where Z, € L.

(b) If Disan enddmorphism of N, we set:
(Bgr+1D)(u, v) = Q*+(Du, v) + Q¥+ (u, Dv) — DQ*+(u, v). (6-5)

Let Z be an element of L. If U is a contractible domain of W, there is a function
wy € N(U), defined up to an additive constant, such that:

Z IU = [L_l(dWU). (6-6)

Since Q%+ is null on the constants, we can define a differential operator Q¥+ of
order (2r + 1) by

T = Q" (wu, ulv) (u e N). (6-7)
It is easy to verify that, if Z € L satisfies (6-6) on U, we have:
(G2r-1Z(Z) + 207 )W, V)lo = —8Q* (U v, v |y, wo). (6-8)
For r = 1, 0% = 0 and (6-3) can be written with the above notations:
aD, — (1/31) @%) = 0.
‘We thus obtain:

PROPOSITION 15. The derivations D, = Dy + vD; of Q up to the order 2 are given
by:
Dy = #(Zy), Dy=(1/3Y) 0% + L(Z)) + KZy

where Zoe Land Z, € L°.

(©) O being a deformation of the Poisson Lie algebra, we have:

1 2¢+1, — 1
@ e e W = Y S m T D

7,831

Q2r+1(Q28+1(u’ U), W) (6_9)
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where S is the summation after cyclic permutation on u, v, w. According to the defi-
nation of Q%+, we have on the domain U, for Z € L satisfying (6-6):

& SQ2r+1(Q28+1(u ]U , U ly), Wu) = (62r+1Q22,+1)(u= l’): U (u: veE N): (6'10)

where & is the symmetrizer in (r, 5). It follows from (6-8), (6-9), (6-10) that for Z € L:

.-._1__ 26+1y __ 1 25-+1 _
@+ 1) Con#(Z) + 0077 = — ,2,:3‘ @r+ D@2+ D! o0z, (6-11)
r.s>1

We deduce from (6-11) that D, defined by (6-1) satisfies formally (6-2) if and only if
for each r = 1, 2,...

- _ 1 2¢+1 1 — 1 28+1) _
&b @+ 1! 90z~ + ,g:_, @r + D! Garnr (D‘ s+ Nt =% ) = 0.
r.85l
. o (6-12)
(d) Consider a derivation of Q:
-1
D,= ) vD,
s=0
up to the order t. We shall prove by induction that we have fors < ¢ — 2
— 2r" +1
Da - ,._E_' (zr + l)' Q s
7,450
that is:
1 2s+1 r’+1
A I e AR S O
31

where Z,e L for s =0, 1,...,(t — 2) and for s = ¢ — 1:

D= 05+ T o 5P+ FE) + HZL) (614

g —t—1

where Z, , e Le.
If we introduce (6-13), (6-14) in (6-12), we obtain:

__1_ 241 1 R or
R VR P N S e TR
r.rlapl
1
+ ﬁ;,, YTV 9211 2(Z) + 33 a,,(.z’(z,_,) + k(Ziy)) = 0. (6-15)

52,151
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But, according to (6-11), we have for s < ¢t — 2:

1 1

2rily , 28"+1
( . 1); (a2r+lg(zs) + aQ '+§-r (2',/ + 1)' (ZS' + I)' 827' +1QZ,,+
77,8’ 31

Changing the notations, we obtain:

1 - 1 27’41
rgst (2’, T 1)| ‘721‘+1$(Zs) + r+r’z+:a=t (2)‘ -+ 1)! (2’.: + 1)! a21‘+1QZ:
52,851 rorf 83l

1
— . a 2r+1
. §= ., @r+ 1 oz,
732,831

and (6.15) can be written

1

(2t + 1)' 6Q2¢+!

8D, —

— HZM vn + Gy 0E + ! 0(L(Z) + KZi)) = 0. (6-16)

32,851

We see that 8,(L(Z,_,) + k(Z,_,)) is an exact 2-cocycle. The argument of Section
6a gives k(Z;_,) = 0 and Z,_, belongs necessarily to L. We obtain:

2+1 1 2r41) __
a(D‘ (2t+ D! 0z 2 @r+ 1! <% )_0'

7+ 8=t
r,831
Therefore:
1 241 27+1
Dt (Zt + 1)‘ Q ’E_t (2r + l)' Q + '?(Zt) + k(Zt)
.8l

where Z, € L¢ . We have proved:

PROPOSITION 16. The derivations D, of Q up to the order t are given by (6-13)
and (6-14).
(e) We denote by L* the Lie algebra of the globally Hamiltonian vector fields.
It is known that [L, L] = L* and dim L/L* = b,(W), where b,(W) is the first Betti
number of W. Let E(L; v) (resp. E(L*;v)) be the space of the formal series in v with
coefficients in the Lie algebra L (resp. L*). An element Z, of E(L; v) is given by:
zZ,=Y vZ, (Z,el). (6-17)
=0
E(L; v) admits a natural structure of Lie algebra given by the bracket of the vector
fields and [E(L; v), E(L; v)] = E(L*; ).
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It follows from the above proposition that there is an isomorphism from the
space E(L; v) onto the space of the derivations

A

D, =Y. vD, (6-18)
t=0
defined by p: Z, — D,, with:
2r+1 -
r—‘zx— (2,, 1 l)' Q . (6 19)
7,820

If Z belongs to L, we obtain

p(Z) = Z (2,4 i i

and we have:

kA

PZY = T oy O = L V). (6:20)

If Z,e E(L*;v) we obtain an inner derivation of the Vey Lie algebra and if
Z, € E(L*; v) we have in the sense of the endomorphisms of E(N; v):

P([Zv s Zv,]) = P(Zv) P(Zvl) - p(zvl) p(Zv)' (6'21)

If we consider a contractible domain of W, the formula (6-21) can be extended to
arbitrary Z, , Z,' € E(L; v). Therefore p is an isomorphism of the Lie algebra E(L; })
onto the Lie algebra of the derivations. We have proved:

THEOREM 17. The Lie algebra of the derivations of a Vey Lie algebra defined
by Q is isomorphic with the Lie algebra E(L;v) by the following isomorphism
p: Z,€ E(L; v)— D, , where

s

v y-1 > 0).
Z or + 1)1 (r,s =2 0)
The Lie algebra of the inner derivations is isomorphic to the Lie algebra E(L*;v)
and the first cohomology space HYQ) of the Vey Lie algebra for the Chevalley
cohomology is isomorphic to E(L; v)[E(L*;v). If by(W) =0, all the derivations of
a Vey Lie algebra are inner derivations.

The derivations of associative algebra deformations giving rise to a Vey Lie algebra
coincide with the (local) derivations of that Lie algebra.
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7. C-EQUIVALENCE OF DEFORMATIONS OF N

(@) Let [v, ] be a formal deformation of N

[, o) = ¥ v"COu, v) = {u, 0} + 3 v"Cu, v) -1y
r=0 r=]1
where the C!% (r > 1) are differentiable 2-cochains on N.

Consider an alternate bilinear map N X N — E(N; v) which gives a formal series
in v:

[, ) = 3 v'CO ) = {u, 0} + 3 v'Cu, v) (7-2)

r=0 r=1

where the C® (r > 1) are also differentiable 2-cochains on N. All these cochains
can be extended naturally to E(N; v). We set:

DR, v, w) = 3 SCACT(u, v), w)-
7+ 8=t
7,830

We have D{ = 0; (7-2) is a deformation if and only if DY’ = 0 for ¢t = 1, 2,....
Consider next a formal series in v:

£ ®

T,=3Y vTy,=Id+ Y v'T, (7-3)

=0 8=1

where the T, are differential operators on N; T, acts naturally on E(N; v). We have
also a natural definition of a product T, - T,’ and of the inverse T;* of T, . Consider:

Tv[u’ D]lfl) - [T,ll, T,,U 50) = Z VtFl(u, v)
=0

where we have introduced the 2-cochains:

Fu)= Y T.CPwv)— Y COTw, Tov) (rs, s >0).

T+ 8=} 143848 wt

We have F; = 0. We set:

G,y = ¥ T:CPuv)— Y COTw, Tot) — Y (T, Ty}

r48=t r+8+8 =t s+38'=t

— ¥ (CPTu0) + CPw, Tw)  (rss'=1)

r48=t
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and we obtain:
Fo=CP —c® —oT, + G,. (7-4)

If we evaluate ST,[[u, v]V, w]¥ in two different ways, we obtain:

LeMMA 18. The formal deformation (1-1) being given, for each bilinear map (7-2)
and for each formal series (7-3), we have the identities for t = 1, 2,...:

DO, v,w) + T T.DOu, v, w)

7+ 8=t

= —0Fu, v,w) + S T FACPw,v), w)+ S ¥ {Flu,c), Ty

8=t r+ o=l

(7-5)

+S Y COF ), w)+S Y COFmv), Tew)  (rss = 1)

r+ gt r+at8'=t

Suppose (7-2), (7-3) such that we have formally the identity:
Tlu, 0} — [T, T} =0, (7-6)

that is F, = 0 ( = 1,2,...). We have C{" = C{® + 2T, — G, . It follows that (7-3)
determines (7-2) satisfying (7-6) in a unique way. For this map (7-2), we deduce from

(7-5):
DP(u, v, w) + Y. T, D0, v,w) =0 (ns>1;t=1,2,..)

r4g=t
and so, by induction, DY = 0 for each t. Therefore (7-2) satisfies formally the
Jacobi identity.

PROPOSITION 19. The formal deformation (7-1) being given, each formal series
(7-3) generates a unique bilinear map (7-2) satisfying (7-6). This map is a new formal
deformation of the Lie algebra N.

(b) We are led to the following definition.

DEeFINITION 20.  Two formal deformations of N are called cohomologically equivalent
{c-equivalent) if there is a formal series (7-3) such that the identity (7-6) is formally
satisfied.

It is easy to verify that we have defined thus effectively an equivalence relation.

Consider a formal deformation [u, v} of N (D{ = 0 for r = 1, 2,...) and suppose
this deformation c-equivalent to the deformation [u, v}, up to the order g: We have
by assumption F; = 0 for ¢ = 1, 2,..., (g — 1) for some T’s, that is C{'' — C{® +
G, = 8T, (t = 1,...,(g — 1)). For t = q, (7-5) gives only

e - c® +Gy=0.
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The deformation [y, v} is c-equivalent to the deformation [, v]*” up to the order
(g + 1) if the 2-cocycle (C — C” 4 G,) is exact. The cohomology class defined by
this 2-cocycle is the obstruction to the c-equivalence at the order g.

We have G, = 0. An infinitesimal deformation defined by the 2-cocycle C* is
c-equivalent to the infinitesimal deformation defined by the 2-cocycle C{® if the
2-cocycle (CI? — C®) is exact.

We recall that, for the flat case, we have for the local Chevalley cohomology:

dim HY(N) = 1.

Therefore, at each order g, we have in the flat case only two choices of cochains C,,
up to c-equivalence of formal deformations (the trivial, and the one given by the
cohomology class B): altogether, we have at most 2? deformations (up to c-equivalence)
at order ¢, and 2% = x; classes of formal deformations. However, at each level there
is only one nontrivial choice to make in this case.

8. GENERAL DEFORMATIONS OF THE ASSOCIATIVE ALGEBRA N
(A STAR-PRODUCT 1S BORN)

We saw that (3-14) defines a deformation of the associative algebra N of C* func-
tions over a symplectic manifold W if I' is without torsion and curvature. It is natural
to ask whether a formula analogous to (4-10) can be obtained for the associative
algebra when such connections do not exist. Vey proved the existence of a Lie algebra
deformation (4-10)—without giving explicit formulas for Q?+1 when r > 1 —under
the technical assumption H3(W; R) = 0 by tracing at each step the possible obstruc-
tions to the continuation of the truncated deformation in the (finite-dimensional)
third differentiable cohomology space. However, in the associative case the obstruc-
tions space is isomorphic to the huge functional space of the global sections over W
of the fiber bundle A3TW (skew-symmetric 3-tensor fields): the same method is
therefore impractical, except of course when dim W = 2, in which case the obstruc-
tions disappear. As a matter of fact, Vey was able to find cochains Q7 satisfying the
associative property modulo terms of higher order in A only up to the order » = 5.

We shall present a procedure for obtaining an associative deformation which we
may write symbolically as exp(AQ)(u, v):

Uk o=uo+ Y, % 0(u, v), y,veN 8-

r=1

where 0! = P and the cochains Q" are explicitly determined, when the manifold W
can be imbedded in some R?* in a suitable way. We shall illustrate the procedure by
an example [14] that will be needed later for the hydrogen atom problem.
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Let the sphere S! be imbedded in R+ with radius 1, and consider the symplectic
manifold W = T*S'in W = R2+% = T*R“! defined by the two constraints [15]:

41 141
|wlP=3 (m2=1 =w-f=) 7 =0 (3-2)
1=1 a=l
Here (7%, £,) are canonical coordinates of 7*R*! and this space is endowed with the
usual symplectic structure F = 25;11 dme A df, . We shall denote by I” the canonical
flat symplectic connection of W, so that in the coordinates (=, £) the covariant
derivative is nothing but the usual partial derivative, and by Pr the bidifferential
operator defined by (3-1)—the rth power of the Poisson bracket P of W in the
canonical coordinates.

Notice that 2(} | |2, 7 - £/ [?) = 1; that is, W is defined by a pair of canonically
conjugate constraints. In accordance with the general theory of second-class sub-
manifolds [6c, 16a] the canonical symplectic form F of W, induced by F, defines the
Poisson bracket P of W.

We shall now define a “thickening” of W to an open subset of W by a group G
of symplectic transformations, so that on G-invariant functions P will coincide
with P. Moreover G will be chosen as a subgroup of Sp(2/ + 2, R), hence will be
affine symplectic for P, so that the restriction of 2r to G-invariant functions will still
be a G-invariant function and thus define a cochain Q" on N(W). More precisely,
let G be the following representation of the two-dimensional (non-Abelian) solvable
group in R2i+2;

(774, ga) = (p’”’% P-_lfa + o-‘”u)’ P > 0’ CE R' (8-3)

The space of the orbits of G in W, = (R*! — {0}) x R™! is diffeomorphic to
W = T*S!, the projection of W, onto W being given by

$: (% E) > (| w |, [ | & — (7 - €| m ) 7).

Note that it is the representation of W as a suitable quotient that matters, the
imbedding being used for commodity only. Now ¢ defines an isomorphism ¢ between
the space N of differentiable G-invariant functions on W, and N = N(¥) by

$:Ngodr>d|, =ucN, Fluri=uo .

From what has been said before, we take §(P(4, %)) = P(u, v). The group G is
generated in W by the vector fields

Z = m¥(8fen") — £,(6/8E), T = w¥(0[EL,). (8-4)
We have
LA =0=2(TA, LzZ)['=0=2LTTI
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therefore, with V defined in W by I, for every 4, 6 e N :
P, 6) = A*% - A4Pr Y, ., 4 Vp . 55N (8-3)
(summation 4, B = 1,..., 2/ + 2) so that we can define, for u, ve N:
Q" (u, v) = $Pr(§u, §~) = P, %) | (8-6)

and (8-1) defines in a natural and global way an associative x,-product on N(W),
with a corresponding Vey deformation

0, ) = 3. (7J2r + 1Y) Q¥+, v). (8-7)

=0

This procedure can obviously be generalized to other symplectic manifolds that
can be realized as quotients of an open set in some R2%, foliated by the orbits of an
affine symplectic subgroup. For example, one could take a hyperboloid instead of a
sphere by replacing in (8-2) the Euclidean summation by a pseudo-Euclidean one.
(It is important to take | 7 |* 5= 0 because the cone is G-invariant. When |7 |2 =0
one does not have a pair of conjugate constraints and the representation of W as a
quotient fails.) Using procedures of this kind [16b], twisted products for cotangent
bundles of most classical groups and Stiefel manifolds have been obtained.

9. INVARIANT *-PRODUCTS

(a) Let (W, A) be a Poisson manifold and N = C=(W, C). For f,g€N,
{f, g} = A(df, dg). Every a € N defines an infinitesimal canonical transformation given
by X,f = {a, f} that preserves the Poisson bracket (Jacobi identity):

X{f, 8y ={Xof 8} +{f. Xag}, Vf,g€N.

This is an inner derivation of the Poisson Lie algebra N.

Let a *-product on W (a bilinear, associative, internal composition law on N)
be given and let ae N. We say that the *-product is g-invariant if X, preserves the
*.product:

X(fxg) = (Xaf) *g +f * (X, 8).

In other words
{a:f*g}={a’f}*g+f*{a1g}: Vf;gGN (9'1)

If the *-product is g-invariant and b-invariant then it is {a, b}-invariant. The set of
all a e N for which the *-product is g-invariant is thus a Poisson Lie algebra of deri-
vations of N (with the *-product structure).
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(b) Conversely, let &7 be any finite-dimensional subalgebra of the Poisson Lie
algebra N. We pose the problem of constructing a *-product on W that is «/-invariant;
that is, g-invariant for every a € +Z. This, in our view, is a central problem of quanti-
zation, a problem that is discussed at length in the companion article [10]. Recall
that the Moyal *-product is invariant under the group of affine symplectic trans-
formations, and that conventional quantization realizes this group as a group of
unitary operators. In general, the C* functions on W that belong to «/ C N will be
taken to have significance as a preferred set of physical observables; hence we require
that the Lie algebra o/ be preserved by the deformation; precisely (henceforth we
write * for x,)

axb—bia=if{a b}, Va, be o 9-2)

where i#/2 = X is the deformation parameter. In addition, it will be supposed that the
set of observables belonging to #7 is “sufficiently large.” Let {L4} (4 = I,..., m)
be a basis for .7 and let J be the map of W into o/ * given by x > £(x) where é4(x) =
LA(x) [17]. The action of the vector field X, in W is now transferred to the image of
J by dJ and this is just the coadjoint action ad*y of &7 in =7* The image
M of W by the map J is therefore an ad*y-invariant submanifold of .*.
The algebra .7 is “sufficiently farge” if this manifold is difffomorphic to the manifold
of actual interest; this happens if J: W — M is locally bijective (if W is the manifold
of interest) or more generally if we are interested in constraint manifolds with con-
straints in Ker J. In any case we now direct the attention to M C &/* and formulate
a precise mathematical problem.

(c) Let &/ be a Lie algebra of dimension m over R and «/* its real dual. We
identify & with the space 7** of linear functionals over &/ *; in particular this means
that a basis {L4} (4 = 1,..., m) for o is also a set of coordinates for «/*. A poly-
nomial over &/* is a polynomial in L!,..., L™ with coefficients in C. We denote by
U(=Z) the enveloping algebra and by S(#Z) the symmetric algebra of the complex
extension of «, and by # the algebra of polynomials over s7*, naturally isomorphic
to S(«7) [18]. The natural Poisson structure on &/* was described in Section 2.

Let M be an algebraic submanifold of o7 *, invariant under ad*y , and let I7 denote
the projection of &, # — #[F where £ is the ideal of polynomials in # vanishing
on M. Thus Kerll = 5 = {fe #;f| M = 0} and II(#) = #{KerIl. Commu-
tativity of the diagram

f,q I
g /{ } >{f',g'}
H\A f ' ’g'
defines the Poisson bracket { f, g’} on II(#) and induces on M the structure of a

Poisson manifold. This is well defined because Ker I7 is adeinvariant: fe Ker IT =
{a, fye KerIl, Vae .
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DEFINITION 21.  An invariant *-product on M is an internal composition law on
II(P), written f, g — f *g, associative and distributive over C, such that

kxf=fxk=kf
axb — bxa=ifk{a, b},
{a,fxgt={a,fixg+fx{a g,

VkeC;a be,

Y, g € 1), -4

Here and below we still denote by a, b the restrictions to M of a, b € &7, considered
as linear functions on A4*. The problem that we are interested in is the construction
of all invariant *-products on M. Concerning the motivation, we may add that the
restriction of &/* to M sometimes has a direct physical interpretation. In fact, any
element g in the center of the Lie algebra 2 (with Poisson bracket) is a canonical
invariant and is expected to remain so after quantization. Fixing ¢ in R defines an
invariant submanifold M of «7*; see also Section 11b.

10. EXAMPLES OF INVARIANT *-PRODUCTS

We shall make use of the formula (3-8) to obtain some examples of invariant
*.products.

(a) Let (W,F,I') be a connected, paracompact, symplectic C* manifold of
dimension 2n, fundamental 2-form F, and connection I'. It will be assumed throughout
that the covariant derivative V of F vanishes. Let {x*} (i, j = 1,..., 2n) be a local chart
with domain U. For u, v € C*(W, C) define

® k . .
Ukv= ) 7)2—, i P (10-1)
k=0 " *
with A = i#/2 and
cil‘“ik = V,-l...,-kl: = F’.ljl. i Fikhv’.""l". (10‘2)

Recall from Section 3d that this product is associative if and only if the torsion and
the curvature of I' vanish and suppose that this is the case. Denote by Inv(F, I') the
subalgebra of the Poisson Lie algebra N = C=(W, C) that consists of all ae N,
independent of A, such that (10-1) is a-invariant (Section 9a). This algebra is iso-
morphic to—and, if I' = 0, equal to—the semidirect product of Sp(2n, R) and the
Heisenberg Lie algebra H, . Of course, its representation by vector fields (considered
in Section 5) is the semidirect product of Sp(2x, R) and the Abelian algebra R?".

(b) Let o be any subalgebra of Inv(F, I") and J the map of W into /* defined
in Section 9¢. Let M = Im(J) C «/* and denote by J* the map of C=(M, C) into
N defined by

J*: fis fo . (10-3)
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Finally, let Ny = Im(J*) C N and assume that N, is a *-subalgebra of N. In that case
a *-product on M is defined by

(fxg)edJ = (f=J) = (gelJ). (10-4)

We give some examples, taking (W, F, I') to be R* x R™ with the ordinary symplectic
structure,

ExaMrLE 22. Let o7 = H, with basis x,..., x2*, x2*+1 = ¢; M = Im(J) is deter-
mined by e = 1 and is a single 2n-dimensional orbit of ad*, in &7*. Moreover,
ad*y, can be identified with W, J is the identity map, and N, = N.

ExampLE 23, Let o = Sp(2n, R) with basis {x'x} (i, j = 1,..., 21); M is a single,
2n-dimensional orbit; N, consists of all even functions of x%,..., x2* and is a *-sub-
algebra of M.

ExaMPLE 24. Let x1,..,x2" = ¢%,...,¢" pY...p" and &/ = SO(n) with basis
LY = gip? — gipt (i, j = 1,..., n). The commutant & of o7 in Inv(F, I') has the basis
2 9%, 3 ¢'pt, T pipi. The commutant Ny of & in N consists of functions of L¥
and therefore it coincides with N, . It follows (see the Lemma below) that N, is a
*-subalgebra of N. In this case M contains many orbits.

This last example has a number of easy generalizations; thus one may introduce
a symmetric, nondegenerate form g on R” and take for # the span of g(g, q), £(¢, p),
g(p, p), obtaining an invariant *-product on M e #/*, where &7 is the pseudo-
orthogonal algebra defined by g. The success of these constructions depends on

LeMMA 25. Let # be any subalgebra of Inv(F, I') and Ng the commutant of #
in N; then Ny is a *-subalgebra of N.

Proof. fu,ve NyandbeZ Clnv(F, "), then{b,u*v}={b,u}x v + u*{h,v}=0
so that u * ve Ng .

These ideas have interesting applications to systerns with constraints, especially in
connection with the problem of quantization. Such applications, where one takes
for Z the algebra of first and second class constraints, are discussed in Section 8
and in Part II {10].

(c) We return to a flat symplectic (W, F, I') with structure tensor A = p='(F).
Forx e U, let
LAK) = GLAR)[ox? (10-5)

be the components of dJ |, . Any contravariant tensor S(x) with components S%" % (x)
at x determines a contravariant tensor S(£) = dJ |, S(x) at £ = J(x), with components

§hem(g) = Lis(x) -+ L{x) S5 (), (10-6)
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and a tensor field S on W, projectable by J, determines a tensor field on M = Im(J).
In particular,

A4r = LALPAY, (107)

and A describes the restriction 4,, to M of the structure 2-tensor of <* introduced
in Section 2a. A tensor defined by (10-6) vanishes if any argument is in Ker(d/ [,);
therefore by restriction to T.M a J-projectable tensor field S on W defines by (10-6)
a tensor field Sy, on M. Note that any tensor field S), on M can be defined by compo-
nents with respect to a basis in &/*.

From now on it will be supposed that the map J: W — M is locally bijective.
[If J is locally bijective except on a subset of lower dimension one removes this subset
from W.] In this case M is an orbit of ad*y in &#* and A,, determines a symplectic
structure on M; also Ker(dJ) = Ker A. We stress that this limitation is a matter of
convenience, since a *-product is induced on M under the weaker condition that
N, be a *-subalgebra of N.

The image I" = dJ(I") is a “pseudoconnection” and its components can be defined
by

1480 — [ ALBA®APLE — P*LO) (10-8)

where L, = 82L/ax* 8x'. We can set A4PI"B¢ = [48.c, 50 that the components
T4 of the *pseudoconnection” are determined (and need to be determined) only
to the extent that they are defined by this identity.

The “contravariant derivative” of the field (10-6) is the image by dJ of the contra-
variant derivative of S. Since S vanishes on Ker 4, its components are well defined by

{LB; SAI"'AE} = {LB, SAI"'Ak} _ i fBA(SAl"'C"'Ak_ (10-9)

{m=]

The *-product f * g for f, g € C*(M, C) was defined by (10-4); direct calculation
gives

frg= i Wty fA2eg g ay (10-10)
k=0

where
A A = (AR e (T A £) -0) (10-11)

and where the “covariant components” gy, ... s, are defined (and need to be Qeﬁned)
only to the extent that they are determined by the equation gBr Bk = /81 -
AB"A"gA oA, -

1 k

(d) Conversely, we may pose the question of finding necessary and sufficient
conditions on I' in order that (10-10), (10-11) define an associative, invariant
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*-product. Since the covariant derivative of 4 vanishes, I/ is completely symmetric
and an elementary calculation gives

) R (10-12)
P86 — pred = APPCe. (10-13)

The last equation is the condition for {L4; A5} to vanish; hence (M, A, I’) is a
symplectic manifold with fundamental 2-tensor 4,, and “pseudoconnection” I" such
that the contravariant derivative of 4 vanishes. Moreover, I'is &Z-invariant by hypoth-
esis and therefore I is also &/-invariant, which is expressed by

{LA, PBC.D} _ CEBPEC'D - CECPBE'D _ CEDPBC'E — 0. (10_14)
Finally, we express the fact that R(I') vanishes. Let X be a vector field on &/* | M
that vanispes on Ker/ and whose components can therefore be expressed as
as X% = /A42B5 . Then one finds

{LAAL?; X — {175 (L XY} = Raseop,
where the contravariant “curvature tensor”
RABCD = {LB, I’vDA.c} _ {LA’ PDB.C} + pgcfnaz,p - I‘w.gcqu.D + CQ_BPDE.C
is the image by dJ of R(I"). Hence R(I") = 0 implies that
RascD — (), (10-15)

PROPOSITION 26. The *-product defined by (10-10), (10-11) is o/-invariant and
associative if and only if the “pseudo connection” I satisfies (10-12)~(10-15).

(e) Equations (10-12)-(10-15) imply that
FABC = {LC;{LB; {LA, f}}} = 0  if fis linear, (10-16)

which means that the series that defines L4 * g ends with the third term. If g is a poly-
pomial in I3,..., [® (more precisely, g € [I(#), in the terminology of Section 9),

LA x g = LAg + MLA, g} + $A(L5C4858; + K#Pop) g (10-17)
where
K% = —1241.5%. (10-18)
In particular,
LA LB = [ALB + MA2 + jA2KA2, (10-19)

Concerning (10-18) we find by direct calculation:
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PrOPOSITION 27. (1) K42 is constant on each orbit; that is, {L4, K5¢} = 0. (2) The
3-tensor KAPCEC is completely skew symmetric [19].

The *-product on M is determined by (10-17); precisely:

PROPOSITION 28. If I satisfies (10-12)~(10-15), then (10-17) is compatible with
a unique invariant *-product on M, namely, that given by (10-10), (10-11).

EXAMPLE 29. Let W = R®**, I' = 0, and &/ = Sp(2n, R). The components of F
and of 4 = p~Y(F) are related by

A¥F, = §1. (10-20)
Lower case Latin indices are raised and lowered as follows
Xt=A4X;; X, = X'F;. (10-21)
A basis for & is given by real, second-order polynomials
LY = 34x,  A=1,.,m=n2n+1)

where Zfj = X4 . Define g## by

m
224! - — Z gABZIjB;
B=1
and normalize so that
Zﬁzsklgu = aiksjz + 341317‘,
23231'! — 2gAB-

Here ( g4z) is the inverse matrix of ( g48). The Z4’s may be chosen so that

fl. T

(8% = (g4) = .

" —1J

with n? entries equal to +1; in that case L1...., L* span the compact subalgebra. We
find

A2 = (1A, [7} = —tr(Z4Z22°) LPg.p (10-22)

P4B.C — | A] BSCi — t1(ZBICIASD) [Eg ., (10-23)

KAB = 0g 4B, (10-24)
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The case n = 1: Sp(2, R) is locally isomorphic to SO(2, 1) and is of interest in
connection with quantization of the harmonic oscillator. In this case we take

Lt = 3tx + x%x2), L% = x'x®, L% = $(x"x' —x%?%),  (10-25)
1
(g4®) = ( —1 ), (10-26)
—1
[aB.c — 2(gACLE 4 gBCLA — g4ELC), (10-27)

The centers of & and of the *-algebra are generated by

Q = LALPg4n = 0, (10-28)
Q = LA x L3 ,5 = (A%2) KABg 45 = §(ifi)* (10-29)

For future reference we list the lowest order symmetrized *-monomials:

(1/2) Y LA % L® = LAL® + X%g*®, (10-30)
Perm
(1/31) Y LA LB % LC = LALBLC 4 §)\¥(g4BLS + gACLB 4 gBCL4).  (10-31)
Perm

11. CONSTRUCTION OF INVARIANT *-PRODUCTS

(a) We begin by studying invariant *-products on &*, Let us call *-polynomial
an expression involving elements of C and of &/ C 2 and the operations of addition
and *-multiplication, and formal *-product algebra (*-algebra for brevity) the algebra
of *-polynomials with the identifications (9-2). This algebra is obviously isomorphic
(by rescaling in &) to U(&Z). A *-product on &* maps the *-polynomials into
2; precisely:

ProPosITION 30. An invariant *-product on oZ* defines a C-linear map
D: U(A) — P such that,Na e of -

o) =1, D@ = afih,
D oady(a) = adg(a) o P, (11-1)
Ker @ = bilateral ideal of U().

Conzersely, any C-linear map D of U(Z) onto P that satisfies (11-1) defines a *-product
on AZ* given by

fxg=@P(f) Ps(g). Vfige? (11-2)
where @, is the bijection U(sZ)/Ker @ ~ P induced by P.

595fty1f1-7
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ExampLE 31. The canonical bijection between & and U(7), together with a change
of scale, gives a linear map defined by P(@®) = (a/if)*, or a* *xa = g",Yae .
This is the quantization rule proposed by Abellanas and Martinez-Alonso [20].

ExaMprie 32. More generally, for k = 2, 3,.., let

(kY Y Lfx ok LM% = g L% oor L% - T4 (11-3)

Perm

where ¢, € C and T is a tensor of rank k whose components are polynomials of order
less than k. This defines a bijection if ¢, 5= 0, k = 2, 3,.... Example 31 is recovered
by taking ¢, = land T = 0.

A *-product on «7* will be called regular if @ is onto. More generally, let M be any
algebraic ad*y-invariant submanifold of &*, and JI(#) the associated projection
of 2. To any invariant *-product on M we associate a map ¥ (with properties
analogous to (11-1)).

DerINITION 33.  An invariant *-product on M is called regular if the map
¥: U() — II(P) associated with it is onto [21].

The *-product (11-3) is regular if ¢, # 0, k = 2, 3,....

(b) Next, consider the possibility of inducing an invariant *-product on M
by restriction from &Z*. More generally, let M C M’ e o/*, where M and M’ are
ad*-invariant algebraic submanifolds, and let IT be the projection of polynomials
induced by the restriction of M’ to M.

DeriNTION 34, An invariant *-product on M’ is said to be compatible with IT
if Ker IT is *-invariant; that is, if fe Ker IT implies that a *x fe Ker I, Vae «.

If an invariant *-product on M’ is compatible with I7, then commutativity of the
following diagram induces an invariant *-product on M:

/ fxa I
f.9 \f' *g'
*A £ .9 —

Let Z(#) denote the center of the Poisson Lie algebra & and let € denote the set
of homomorphisms from Z(%) to C that reduce to the identity on the scalars. For
any w€ ¥, the family of equations ¢ — m(¢g) = 0, Vg € Z(¥), defines an ad*s
invariant submanifold A, . If IT, is the projection of & defined by M, we have
I\ Z(P) = =. We now restrict ourselves to projections of this type.

DerFmiTION 35. Let R and R’ be commutative rings and 4: R — R’ a ring homo-
morphism. Let 4 be an R-module, 4’ an R’ module and : 4 — 4’ any map that
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preserves addition: ¥(a, + @) = ¥(a,) + ¥(a,). Then ¥ is called [22] semilinear
(relatively to ), in short y-linear, if ¥(ra) = (r) ¥(a), for all re R and a € A4.

Let Z(#) be the center of U(s7) and consider U(#) as a Z(«/)ymodule and I1,(#)
as a C-module.

PROPOSITION 36. Let @: U(sf) — P be the map associated with any *-product
on P, compatible with IT,, and ¢ the restriction of D to Z(#). Then y = wo @ is
an algebra homomorphism and ¥ = Il o D is J-linear.

Proof. Let qeZ(%P) and fe #; g — w(q) e KerII, . Since the *-product is com-
patible with 17, we have (g — n(q)) * f€ KerII, and thus IT (g * f) = =(¢) IL,(f)-
Thus for any eZ(«) and fe U), Y(f) = II, (4f) = IT($(9) * B(f)) =
W P ).

A converse is also true; it will be formulated below. Since, for every g € Z(%)
there is some m € ¢ such that =(q) ¢ 0, we have

COROLLARY 37. Let aregular *-product on sZ* be given, and let D be the associated
map of U(s#) onto &. Then each of the following statements implies the other two:

(i) The *-product is compatible with II,, Vm e €;
(i) D is ¢-linear [¢ = D|Z(A)}; (11-5)
(iiy g*f=qf, YqeZ(#P), Nfe?.

DEFINITION 38. A regular, invariant *-product on #/* that satisfies any one
(and therefore all) of the conditions (11-5) is called normal. The associated map
will also be called normal in this case; hence any map @: U(%/) — Z is normal if
it is onto, ¢-linear, and satisfies (11-1).

(c) Let an invariant *-product on M, be given and consider the question of its
“lifting™ to &/*; the following gives a partial answer that covers the most interesting
cases:

THEOREM 39. Let an invariant, regular *-product on M., be given, with the associated
map ¥: U(f) — I1(P) supposed y-linear from the Z(sf y-module U(Z) to the C-module
IT(P) ( = V| Z()). Suppose that either o/ = H, , the Heisenberg algebra, or
that <7 is semisimple and that the ideal Ker ¥ is generated by Ker . Then there exists
a normal *-product on of* with associated map ®: U(sf) ~ P (bijective in the semi-
simple case) such that I1, o D = V.

Proof. In both cases U(«/) and 2 are free modules over Z(«/) and Z(Z) (respec-
tively); Z(./) is a polynomial algebra in a finite number of “Casimir” elements
4. € Z(£) [18]. We denote by P, the “canonical” bijection U(#) — Z obtained from
the canonical bijection U(«) — S(«) by rescaling, and by &, its restriction to Z(=7).
We give a proof for the semisimple case.
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(i) Construction of ¢ = @ [Z(«/). We need an algebra isomorphism
é: Z(oZ) — Z(P) such that 7o ¢ = . To show that one exists let $y(4,) = g, and
$8) = g. — (@) + $(d) = g + A = g With ), in C. We extend ¢ as a (poly-
nomial) ring isomorphism Z(s#) = C[4,] -~ Z(?) = Clg.’].

(i) Construction of bases. We can write 2 = @y, 2" as a graded algebra
and # = {Jpo P, as a filtered algebra. The adjoint action of & in & preserves the
grading and filtration and is fully reducible in each component (since .« is semisimple).
The ideal # = Ker I, is ady invariant and filtered into f = VS, , S, =SF N Z,.
This allows us to construct by induction a (graded) supplementary subspace Z to
S in 2, invariant under ad,, , and therefore a basis {x'} (i = 1, 2,...) of Z# as a Z(%)
module with each x? in 2. (These constructions are similar to those of [18, Sect. 8.2].)
Let {x;} (i = 1,2,...) be a basis for # as a Z(#) module obtained in this way, and let
£ = D3 (x); then {&;} is a basis for U(sf) as a Z(«/) module and the IT,(x,) form a
basis for I7,(#) (as a C-module). We have ¥(&) = 3; C;I1,(x,) (finite sum), with Cy
in C.

(iii) Construction of P. We take P(£;) = 3°; C,;x; and extend by ¢-linearity:
any # in U(s/) can be written in a unique way as £ = ¥; Q&,, with Q, e Z(#);
we define (%) = 3, H Q) PE) = Ti5 HQy) Ciyxs. Then D is ¢-linear (by con-
struction) and commutes with ad, (because ¥ does). Furthermore, @(1) == 1 and
P(a) = afif for a in . Finally, the @ that is constructed in this way is bijective
(because Ker ¥is generated by Ker ¢ and Ker ¢ = {0}).

The Heisenberg case is straightforward. The fact that Ker @ is a bilateral ideal
can be seen using the unique decomposition of any X in U(«) into X =
T (€ — W) Y+ Yo with ¥ in %%(P) (j = O, 1,..,, K).

ExaMpLE 40. LetsZ = H,, with basis p, g, ¢ and structure

9, =e, [g.e]=1[p,e] =0. (11-6)

Let S mean symmetrization with respect to the order of factors and take, for
k.Ilm=01,2,..:

@(Spkqlem) = (1/iﬁ)k+l+mS(P*)lr(q*)?(e*)m —_ Cklm (ll_’])

where {C*™; are polynomials in p, g, e, with C% = [, C19% = p/i, C™° = ¢fif,
C" = ¢fifi. This *-product is &Z-invariant if and only if the following recursion
relations hold:

ihe(c/eq) CHm = JCk.1-1om+1,

ihe(6[op) Chm = kCk-1.1.m+1, (11-8)

The center of U(+/) is generated by e; hence (11-7) is ¢-linear if and only if e*f = ¢f,
Vfe Z; that is, C¥™ = (efifiy» C** where C* is a polynomial in p, g. The necessary
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and sufficient conditions for (11-7) to be both invariant and ¢-linear can be expressed
by [23]

S U0 (tap + By + ye) < I = Clay B) elerstasmerf (11-9)

oo

where C(e, B) is a formal power series in «, 8 and the equality is to be interpreted
in the sense of equality of formal power series in «, 8. Comparing the constant and
linear terms in (11-9) one sees that C(«, B) must have constant term = 1 and no linear
terms, so that

S(px)Hg#*)Y(ex)" = (p*q' + - e,
where the unwritten terms are monomials in p, g of order <k inp, <l/ing,and <k + [
in p, g. Therefore (11-9) is regular and thus normal. Thus one finds, in the case
o = Hy, that invariance and ¢-linearity imply regularity. In the case C(x, f) = 1

we recover the ordinary Moyal product; that special case is characterized by the
natural invariance under the semidirect sum Sp(2, R) - H, .

ExampLe 41. Let & = SO(2, 1) with basis {L4} (4, B = 1,2, 3) and structure
[L4, LB] = /A48 = 45CLPg.p (11-10)
with ( g 45) = ( g®) given by (10-26). The center of Z is generated by
Q = L% ;. (11-11)
The center of the *-algebra is generated by
Q = IA% LBg 5. (11-12)
On any M, , O becomes fixed in C by the projection 7 and O becomes fixed in C

by the map ¢. A basis for #—as a Z(#) module—is given by {T} (@ = 1,2,..),
where

Ay Ay e+ a— DI o g | sy yda
TH — . Z—z (- k) /2 AR CR=T SgAl t ... ghokada-i
X Eayty * By ypp e LPtLAos oo [ (11-13)

Here S means symmetrization with respect to permutation of the indices. Let {P(a)}
be the “solid spherical polynomials™ defined by

Pa(a) = T(,)(d,..., a) (1 1-14)
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and let B,(a) be the *-polynomial obtained from P,a) by the substitutions
LAx -»+ LA — LA 5 --- 5 LA The map D must take the form

B (@) = c.P.(a), Yae oA, (11-15)
withe,e C — {0}, « = 1,2,..., ¢; = 1. Taking « = 2, 3 we find in particular:

SLAx LB = ¢,LALE + HQ — c,0) g*2, (11-16)

SLAx LB x LC f— csLALBLC + %(Q —_— CSQ + %(lh)z)(LAgBC + LBgCA + chAB).

These results reduce to (10-30), (10-31), when ¢; = ¢, = 1 and Q, Q take the values
(10-28), (10-29). If, for the same values of Q, O, one takes ¢, = 1, « = 1, 2,..., then
the *-product given by (11-15) reduces to that calculated in Section 10: Egs. (10-10),
(10-11) with (10-8), (10-9), and (10-27).

(d) The results obtained here may be summarized as follows. The definition
{11-3), with ¢, = 1 and T = 0, defines an invariant *-product on &7* in the simplest
possible way. However, this *-product is not compatible with the projection to an
invariant submanifold of &/*, and it becomes interesting to calculate the required
modifications; that is, to find ¢; and T such that the *-product becomes compatible
with the projection. Corollary 37 solves this problem in the case of invariant sub-
manifolds M, defined by fixing Z(%). Equation (11-15) gives the general form of the
solution for the case &/ = SO(2, 1). Unfortunately, these results are incomplete,
since the set {M,} (m € €) does not include all the orbits of ad* in &Z*.

DEFINITION 42. An orbit M of ad*,, in & is called regular if there is a 7€ ¢
such that M is open in M, , otherwise exceptional.

The term exceptional is justified by the following fact. Let £ e &/* and M(¢) be
the orbit of ad*. through £ Then the set of all £ € «7* such that M(¢§) is regular is
open in .* and its complement is a cone. This is not to say that exceptional orbits
are uninteresting; on the contrary, the construction of invariant *-products on excep-
tional orbits presents a challenging and physically interesting problem.

12. *-EXPONENTIALS

Here we attempt to generalize, to any Lie algebra, the ideas that underlie the Weyl
correspondence [2], a tool that played an important role in the discovery of the Moyal
bracket. We begin with a brief review of the simplest case ( a restatement of the usual
Weyl correspondence).
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(8) Let o be the Heisenberg algebra H; , with basis g, p, e and commutation
relations (11-6). Let «, B, v be a set of coordinates for R? and consider the formula:

Ap, 9, €) = [ ecorsorrlE(a, B, y) dex dB dy. (12-1)

Under suitable restrictions on the class { f} of functions and the class {F} of distri-
butions, this is a bijection.
On the other hand, let ¢’, ", ¢', be operators in L*(—c0, 4 0) defined by

) = ), PY0) = iR ), ) = ).

There is a common domain of analytic vectors on which g, p’, ¢ are essentially self-
adjoint, allowing us to define a group of unitary operators

Ule, B, y) = eor #7028 (o, B, y) e R (12-2)
with the multiplication law

U, B, ) U, B,y) = Ul + o, B+ B,y + 9 + 3ef —oB). (12-3)

Now consider the formula
A = [ etassr 10 (o, B, 7) dec B dy (12-9)

(the last integral being an operator integral with the strong topology). Under suitable
restrictions, (12-1) and (12-4) establish a bijection 4 +— f between a class {4} of
operators in L? and a class { f'} of functions on «#*; this is the Weyl correspondence.
Now let 4, B,..., be operators in L? and Ay , By ..., their images under the Weyl
correspondence. The Moyal *-product is then defined by

Aw * By = (AB)w . (12-5)

In particular, let

A = Ule, B; ')”)’ B = U(C!/, JB” yl)’
AW — e(aa+8p+'ye)/iﬁ’ -BW' —_ e(u'q+B’m+‘y'a)/iﬁ.

Then (12-3) gives

AW * .BW - AWe“ﬁlz)A.BW (12'6)
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where 4 is the operator
fdg ={f g

The result (12-6) is easily generalized to a large class of functions, including all poly-
nomials on &%,

The essential point here is that the functions (U(x, B, v))w form a group under
*.multiplication that is isomorphic to the operator group (12-3). We now investigate
invariant *-products on any Lie algebra from this point of view.

(b) Consider the formal group [24] with Lie algebra 7. For a € &, let {exp(ta)}
(te R) be the one-parameter formal group exp(ta) - exp(t'a) = exp((t + t') a).
For a, b € o let ¢ = c(a, b) be defined by the Campbell-Hausdorff formula:

exp(a) - exp(b) = exp(c). (127

Let 2 be the extension of & to the algebra of formal power series over 7.

DermaTION 43. We call *-exponential the function Exp: & — &', a— Exp(a),
defined by

©

Exp() = 3, = ()" (a* ), (129)

n=0 ""°

(ax)*=ax ---xa (nfactors). (12-9)

PROPOSITION 44. The fimction Exp enjoys the following properties:
(i) Exp(a) * Exp(d) = Exp(c) (12-10)
where ¢ = c(a, b) is defined by (12-7).
(i) (adw(a) Exp)(b) = {a, Exp(b)} = ad*«(a) Exp() (12-11)
where ad g is the extension of the adjoint action of & in o to formal power series over 4.
(iii) Expl@) =1 + afifi + -

-3 ;11_, ) To(@nery @), (12-12)

nm=0 °"°
where Ty is an n-linear map of & into 2.
Proof. (i) This follows from (12-7) and Eq. (9-2):
(@xb—bxa)fih={a, b}, Vabes, (12-13)
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(i) From (12-10) we extract the terms linear in « and obtain
(1/if)(a = Exp(b) — Exp(b) * @) = {a, Exp(b)}; (12-14)

the left-hand side is (ad(a) Exp)(d).
(iify This follows immediately from (12-8).

Conversely, we have

ProposITION 45. Let f: & — P be any function such that

D adAa) f(0) = {a, f(b)}, (12-15)
(i) fla) =1+ afih + -
-3 1 )" Tn(aye @) (12-16)

n=Q °°

where Ty, is an n-linear map of &/ into . Then there is a unique C-linear map
D: U(H) — 2, given by

(a*x)* = Twa,..., a). (12-17)

If Ker D is a bilateral ideal of U(sZ), then D defines a unique invariant *-product on
A* and fis the function Exp for this *-product.

Progf. From (12-15) and (12-16) we conclude that ¢ commutes with ad. and
that D(1) = 1, P(a) = afi#; therefore, if Ker @ is a bilateral ideal of U(s/), we have
an invariant *-product by Proposition 30. Substituting (12-17) into (12-16), we see
that f coincides with the function Exp defined by (12-8).

Remarks. (1) The condition that Ker & is a bilateral ideal of U(#) is necessary
as well as sufficient. (2) Any function f: &7 — & that satisfies the conditions of
Proposition 45, with the exception of (12-15), defines an associative *-product on 2.

ExaMpiLE 46. Let o be the Heisenberg algebra with basis x,..., x2"** = ¢,...,q";
Phe. D% e with [g¢, p’] = 8%e, and the other commutators equal to zero. Let
@Y p* — Q... P = p1__ 32" be a canonical transformation and define

Exp(oug® + Bip* + ye) = elw0 48P velin,
Then the associated *-product is given by (10-1) and (10-2), with A = #/2 and

oyt eym  g%xk

k
Ts =2 % oyt oy™

@, Jyeor = 1,..., 21);

it is &7-invariant if and only if y; — x, are constants and then it is an invariant *-pro-
duct on &/*,



298

104 BAYEN ET AL.

() Next, consider *-products on an invariant submanifold M of &/* and the
restrictions on Exp implied by compatibility of the *-product with the associated
projection II. Recall from Section 1lc, Theorem 39, and Corollary 37, that many
regular, invariant *-products on M, , we %, can be obtained by projection from
a regular, invariant *-product on £7* with the property

gxf=gqf, VgeZ@), Vfe?. (12-18)
Of course, (12-18) remains valid for fe #'. In particular,
g * Exp(b) = q Exp(d), VgeZ(P), YbedA. (12-19)

We shall show that the structure equations (12-10) allow us to reduce these equations
to partial differential equations for Exp. First, an example.

ExampLE 47. Suppose that o7 has a nontrivial center & ; then any = € € defines,
by restriction, a linear map o: 2% — C. [This map defines a submanifold M, of &%
the following applies to the problem of construction of a *-product on either M,
or M, .} Let a normal *-product on &/ * be given, and let Exp be the associated *-expo-
nential. Then (12-18) holds and implies that

a, * Exp(b) = a, Exp(b), Va,e oy, Ybe.
Using {12-8) and (12-10) it is now easy to see that
Exp(b + a,) = Exp(b) e***, Va,e o, Vbe . (12-20)

In particular, Exp reduces to an ordinary exponential if & is Abelian. The calculations
that follow will give analogous results for the general case.

let teR and c; = c(ta,b), where c(a,b) is defined as in (12-7). From
Exp(ta) * Exp(b) = Exp(c;) we get by formal differentiation of formal power series
with respect to z at t = 0:
a * Exp(b) = i#id, Exp(cy) |¢mo = #in® Exp(b) (12-21)
where %% denotes the vector field on &/ defined by
U R P
[The tangent space at any point b € & is canonically identified with »/.] We have
7% | = a + }la, 8] + 5 [[a, b], B] +--

w0
= Y B,x"a,

n=0
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where x is the linear operator xa = —ad () a and the coefficients B, are the Bernoulli
numbers. The identity 3. o B,x® = x/(1 — e—=) between formal power series can
be used to evaluate 5. For example, if ad(b) is diagonable and & = @, E, is the
eigenspace decomposition and {P,} the associated projection operators, then we have
X = — Y AP, and

A2

fanh V2 *) a + $la, b]. (12-22)

7h=(Po+ ¥

A#0

Let {L4} (4, B = 1,..,m) be a basis for &, and a = a,L4, n* = am*; then
{n"} is a family of vector fields over &/ and we have

LA « Exp = i#n” Exp. (12-23)
Let O be any element of the center of the formal *-product algebra of the form
Q = Qua L * - % LA (12-24)

where the coefficient tensor is completely symmetric. The value of Q in Z(2) is also
denoted Q. Then

Q * Exp = ()" Qu...an™ *+ 1™ Exp. (12-25)

PROPOSITION 48, Let a normal *-product on s#* be given, and let Exp be the
associated *-exponential. Let Q be any element of the center of the formal *-product
algebra of the form (12-24). Then EXp satisfies the following partial differential equation:

(i7" Qayeean™ = Exp = Q Exp. (12-26)

Proof. Replace g — 0 in (12-19) and compare with (12-25). Combining this with
Proposition 45 one has

THEOREM 49. Let f: of — P’ be any function such that:

() ade(a)f(b) = {a, F(B)}
() fla) =1+ afiti + - = Tuo (nY)YiH) " Ten(a,..., @).
(i) The C-linear map @: U(sf) — P defined by (a*)* = T(»)(a,..., 4) is bijective.
(iv) For every element Q of the center of the formal *-product algebra of the
Jorm Q = Q.4 LA % = % L,

) QAI---A,‘77A1 - ptif = Of.

Then D is normal and defines a unigue invariant *-product on s/*, compatible with
11, for every = € €, and f is the associated function Exp.
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. ExaMpPLE 50. Let &/ = SO(2,1) and adopt the notations of Example 41. Let
b = bL4 € o and let § denote the matrix of —ad4(b). We have

EAB = CiCbC s 52.43 = 4’(bAbB - 128448),
tz = g(b, b) = b02 - b12 — bzz.

If £2 5 0, then & is diagonable, with projectors satisfying
P2i+P—2i = _52/4t= l "_'Po.
Thus we get from (12-22) (and the definition 7® = a,m4):

7 = (1 + 36 + }6%(1))s" &2,
o(t) = (1/t®)(1 — tftant)

where 92 denotes differentiation with respect to by . The center of U(«) is generated
by the second-order Casimir operator and the set (10-26) of differential equations
reduces to

(#)* g45m71® Exp = Q Exp (12-27)
or

[2(0 — 12%0% — 1) b A + g5840% + (20 — 120* — 1)(b by — 1% 45) PAG
~ (#)~2 0] Exp = 0.

This equation is of course ad, invariant and can be separated by introducing pseudo-
spherical coordinates: ¢, z = cosh § = 5(¢2Q)~1/2 and a polar angle. The invariance
property of Exp, namely, Eq. (12-11), means that Exp does not depend on the polar
angle and can be expanded in terms of Legendre functions; formally Exp(b) =
>, C'ut) Po(z). Now Exp(b) must be interpreted as a formal power series in {b}
as well as in {L4}; we therefore restrict the summation to values of o € C such that
each term is a formal power series; that is

Exp(b) = 3 Cu(t) P.(B). (12-29)

Here P,(b) is the “solid spherical polynomial”” defined by (11-13) and (11-14); it
differs from the usual Legendre functions by a factor #*Q*/2 and is a polynomial in
both {b,} and {L4}. Of course, (12-28) must be interpreted as an equality of formal
power series. For C,(¢) we find

[o2 + 20— 22D @2 0] ey = 0 (129
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Consider the limit 2 — 0 with b 3% 0, then

Pa(b) — (2(1 :! 1)!!

B (12-30)

Therefore, the only acceptable solution of (12-29) is the one that is regular at ¢z = 0:

_ Ca sin £\* @ o 3. e g
) = g 1)”( - ) 2F1(7 Fl4 1,5 —Lat3;sin t) (12-31)

where ¢, is a constant and the parameter / is defined by
0 = @RI+ 1). (12-32)

Equating equal powers of {b,} in (12-28) we get (b%)" = ¢,b" + a polynomial of
order r in {L4} that vanishes when either Q or ¢2 vanishes. The constants c, in (12-31)
can therefore be identified with the constants ¢, in (11-15); that is, Egs. (12-28) and
(12.31) give the function Exp for the *-product defined by Eg. (11-15). Note that ¢,
and ¢, must both be equal to 1.

In particular, if we specialize once again to the interesting special case @ = 0,
O = 3(i#)* (i.e, | = —3}) and ¢, = 1, then

Exp(6) = ( cos % )‘1 o\2/0tanterbsen. (12-33)

In Part II [10] we shall rediscover this formula and obtain from it the spectrum of the
harmonic oscillator.

In order to show the connection between (12-28) and (11-15) in more detail we
give explicitly all terms up to the third order in {b,} in Eq. (12-28):

1 -+ blifi + (b *)2[2(ih)? + (b *)3[6(H)* + -
= 1 4+ bjifi + [eb® + HO — c,Q) 121)2(%)*
+ [esh® + O — csQ + $(H)? 12b)[6(iA)° + -,

from which one recovers Eq. (11-16). .
(d) We believe that the function Exp can be a useful tool for representation
theory. Consider the formula

7® = [ fla) Expda) di(a), (12-34)

where f is some function on &7, di is the Lebesgue measure on o, and Expga) is
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the value of Exp(e) at £ € &/*. When & is Abelian and the *-product is normal,
then this reduces to the definition of the ordinary Fourier transform. In general, one
has a novel and possibly interesting notion of Fourier transform that relates f on
& to f on &/*. We shall not approach the problem of determining the precise con-
ditions under which (12-34) makes sense, but limit ourselves to some formal obser-
vations.

One has

£+ &= [ fla) £(6) Expdc) dp@) dju(b).

Here and below ¢ stands for the Campbell-Hausdorff function ¢(a, b). If the *-product
is normal we can restrict fand g to M, and integrate to obtain a type of Plancherel
formula:

[ 1+ 2du® = [ fi@) 50) K(a, b) dpta) dp®) (12-35)
where dp is the Liouville measure on M, and

K@, b) = [ Expdc) du(§) = x(c).

In the case of the Heisenberg algebra, the support of K reduces to {¢ = 0} and
Jf*g du® ~ [fz di(a); this shows that [f* g du(£) = [ fg du(¢) in this case.

Another interesting possibility (verified in some cases) is that Exp(te), for te R
and a € &7, have a Fourier-Dirichlet expansion:

Exp(ta) = j e ) (12-36)

One can define the “spectrum” X of a to be the support of 7, and the “multiplicity”
of a discrete point A € Z by the integral of 7, over phase space. This idea finds support
in several particular instances that are investigated in Part I [10].

Let a faithful, unitary representation of the group SO(2, 1) be given, together with
a map of the type of the Weyl correspondence, that maps operators to #': 4> Ay .
A *-product is defined on &’ by 4 * By = (AB)y . Let H be the operator that repre-
sents the generator L! of the compact subgroup of SO(2, 1), so that H, = L' and
(e®/*™),, = Bxp(tL"). Now, since the spectrum of H/2% consists of integers, we must
have Exp(sL%) = 1 for this *-product. Examination of (12-31) reveals that the period
of each term in (12-28) is 27n, where 7 is the smallest integer such that 2nl is integer.
This indicates that the *-products that were found for SO(2, 1) are related to faithful
representations of SO(2, 1) or to coverings of SO(2, 1). In particular, it is known that
(12-33) is related to a representation of the fourfold (metaplectic) covering of SO(2, 1);
that is, the twofold covering of SL(2, R).
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In the preceding paper general deformations of the structures based on the classical
symplectic manifolds were examined. Quantization can be understood as a deformation
of the algebra of observables without any need for introducing a Hilbert space. By a slight
but crucial restatement of the usual interpretation of classical mechanics we find a framework
for the description of both classical and quantum mechanics, within which the continuity
of the quantization process is brought out. The spectra of some important physical ob-
servables are determined by direct phase space methods; this helps support the belief that
a complete and autonomous theory, equivalent to ordinary quantum mechanics in special
cases, but capable of wide generalization, can be constructed.

A. GENERAL PHYSICAL CONSIDERATIONS

1. Contractions and Deformations in Physics

(a) Nonrelativistic physics (more precisely: Galilei-reativistic physics) can be
viewed as a “contraction” of relativity theory (Lorentz- or Poincaré-relativistic theory).
The word contraction is used here in the sense of Segal-Wigner-Inénii contraction
of groups [1]; the Poincaré group contracts to the Galilei group in the limit ¢ — o
(contraction parameter ¢ = velocity of light). A deformation [2] is a sort of inverse
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to contraction: one determines, in a precise mathematical sense, all groups that are
“close” to the Galilei group and finds the Poincaré group (among a small number of
possibilities). In this sense, relativity theory is a deformation of nonrelativistic physics.

Another instance of contraction is the passage from quantum theory to the classical
limit # — O (contraction parameter # = Planck’s constant). Here the inverse process
of deformation is nothing but the general problem of quantization. The radical change
in interpretation that accompanies the passage to quantum theory might discourage
attempts to apply the concepts and techniques of deformation theory; nevertheless
it is our aim to show that it can be done.

(b) The basic mathematical structures of classical mechanics are the symplectic
structures attached to phase space: the algebra (N) of C* functions on phase space
(W) under ordinary multiplication of functions, and the Lie algebra structure induced
on N by the Poisson bracket that is defined by the symplectic form (F) on W. In the
preceding paper [3] we have examined the formal differentiable deformations of these
algebras; in particular, we have introduced an associative algebra (*-product algebra
or *-algebra for brevity) that is a deformation of the algebra N of functions with
ordinary multiplication. For f,ge N = C=(W, C) we write the new (deformed)
composition law on N as (f, g) — f * g. The corresponding Lie algebra defined by
(,9) > [f+xgl = (f+xg— g=f)fih is a deformation of the Poisson Lie algebra.
A particular instance of this type of deformation of classical mechanics is familiar
and is known as the Moyal product and associated Moyal bracket.

It is our intention to demonstrate that quantum mechanics can be replaced by a
deformation of classical mechanics: a description of quantum phenomena in terms
of ordinary functions on phase space, including a complete and autonomous physical
interpretation. Naturally, this alternative formulation of quantum theory will include
some features that are not usually associated with phase space. In order to know what
to expect it is worth while to recall the elements of the theory of Weyl [4], Wigner [5],
and Moyal [6]. See also the preceding paper [3]. (I, Section 12a).

2. The Weyl-Wigner—Moyal Formalism

(2) Consider the Schrédinger quantum mechanical description of a particle
interacting with a potential. Let A be a linear operator in Hilbert space; the following
can be made rigorous provided 4 belongs to a large class of operators including those
that are Hilbert-Schmidt. A unique function on phase space (here W = R® X R?)
is defined in terms of the configuration space matrix elements of 4 (integral kernel
associated with A) by the formula [5]

a5, = [@id|pdEime (g - 22D sy Q)

This defines a one-one correspondence—the Weyl correspondence—between a
large class of operators in Hilbert space and a large family ./~ of functions or distri-
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butions on phase space [7]. The map that sends 4, to A is called the Weyl application
and denoted £2; one has

Q: frr f = f FE, ) eF B Dfin gag goy (2-2)

where f is the inverse Fourier transform of the function or distribution f; and P, {
are the Schrédinger operators that correspond to , g.

An associative *-product (Moyal *-product) is induced in /4" in a natural manner.
Let f,ge.#" and £, § the corresponding operators, so that f = f,. , f = Q(f), etc.;
then

frg=(fweA. (2-3)

That is, the composition law (f, g) + f * g is defined by the commutativity of the
diagram

) g——1f2
-1 fol?
fg— g
Direct calculation gives
o An R )
frg=73 S Pufg)=/rg  (A=i2) 4

n=0 """

where P* is the nth power of the Poisson bracket (interpreted as a bidifferential

operator acting on the couple (f, g) and P is defined by (throughout part A of this
paper, we take for P what is denoted by —P in part B and in the preceding paper):

e =rfe=ZL X -LE-rs0. 2-5)
The Moyal bracket [6] is
{fr8m =[f*gl = (f+xg—g=*f)ifi (2-6)

It is this bracket, and not the Poisson bracket, that corresponds to the quantum
commutator: {f, gl = (/i) f, £lw -

The fact that one has to do with a formal deformation of classical mechanics,
with Planck’s constant # playing the role of deformation parameter, is brought out
by Eq. (2-4).

Other rules of association (other orderings) between functions and operators have
been considered in the literature (see e.g., Agarwal and Wolf, Ref. 7). They are of the
type (2.2), with the difference that the measure d¢ d is multiplied by a weight function

Q=1+ Zﬁ'Tﬂzn

r=1
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where w,, is a homogeneous polynomial; we shall call them £2,-laws. In the orderings
usually considered (standard, normal, etc.) £2; = exp(fiw,), with w, a homogeneous
quadratic polynomial. Its Fourier transform will thus be a formal series

Tﬁ=1+ ZﬁrTr,

Tl

where the T, are differential operators. If the functions f and g give the operators
f and g under the 2,-law, we shall denote by f * ‘g the inverse £2,-image of f §. Then
we have T,f = f, and therefore Ty(f*'g) = Typf * Tpg. Thus T, realizes the c-
equivalence (in the sense of Definition 20 of I) between the Moyal bracket and the
£2,-bracket [f*‘gl, and similarly between the two associative algebra deformations.

All orderings correspond therefore to cohomologically equivalent deformations,
and any treatment done in one ordering can be translated into another ordering via
this equivalence. In this sense the two formalisms are equivalent, though the same
classical function will in general correspond to operators of different form in the
different orderings.

(b) Many problems of quantum physics have already been translated into
the Moyal idiom [8]. Our point of view is different: we want to make the “classical’
formulation autonomous in order to open up a vast field of generalizations with all
kinds of interesting applications (see Section 5). For this reason it is necessary to
deal with some problems of interpretation. We begin with an examination of the
Moyal equations of motion.

Let f be any operator without explicit time dependence, A the Hamiltonian operator,
and f, H the corresponding functions on phase space. The Schrédinger equation of
motion for f is translated by the Weyl correspondence into the Moyal equations of
motion for f, namely,

(dldt)f = [f> Hl = (f+~ H— Hxf)[if. 27
The Moyal bracket defines a derivation of the *-product algebra; that is,

Ux(g*h]=[f+glxh+gx[fxh] 2-8)
whence

;,d;(f*g)=(—§,—f)*g+f*(£—g)- (29)

However, unless f'is a polynomial of order <2, we have for almost all g, A:

[F+(gh)] # [f*glh+glf Al (2-10)

[The significance of the exception made for polynomials of order <2 is discussed
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in Section 3b.] In order words, one solves the Moyal equations of motion (2-7)
for £, g, and fg and discovers that, in general,

(f2)(2) # f(1) g(2). (2-11)

The impression that this result is paradoxical must be dispelled by a proper inter-
pretation.

Every student of the Hamiltonian formulation of classical mechanics has to over-
come the difficulty that is posed by the dual interpretation of the p’s and the g’s.
On the one hand, these quantities are elements of the Poisson Lie algebra of functions
on phase space; this gives a meaning to the Poisson brackets {4, p;} = §;, etc. On
the other hand, the solutions of the equations of motion are trajectories in phase
space, described by an application 7 € R (g¥(1), pi(t)) € R, and no sense can be
attached to the bracket {¢%(r), p;(t)}. The error is more serious than just the usual
failure to distinguish between function and value, for there is here an unfortunate
confusion between observable and state. We shall sketch a formulation of classical
mechanics that makes a fundamental distinction between the p’s and the g¢’s as
observables (elements of N) and the coordinates of points on a trajectory in phase
space. It will be seen that this in effect prepares the way: the shock of a complete
reinterpretation of the process of measurement that usually attends quantization is
softened and the continuous passage that is implied by the use of deformation theory
is brought out. The idea is to isolate the two principal elements of the theory, equations
of motion and jnitial conditions, from each other and to associate the former with
observables and the latter with states.

The Hamiltonian equation of motion for an observable £,

(dldt)f = —{H,f}, [feN, (2-12)

will be interpreted as defining a derivation of the algebra N of C* functions on W.
The solution
) = evnf (2-13)

defines a map of R > Ninto N, (t, f) — f(t). Thus we are permitted to write

(dldt) (1) = —{H, ()}

since f(t) is a function on W. The image of the map (¢, f) — f(t) is a trajectory in
N through f. In particular, ¢i(z) and p,(¢) are functions on W and there is not yet any
reference to trajectories in W. The entire discussion is in terms of functions on phase
space and is not directly concerned with values f(¢)( p’, ") of f(1) at any point p’, ¢’
in W,

To any set of initial conditions one can associate a real (pseudoprobability) distri-
bution p on phase space, normalized so that

f pdpdig = 1. (2-14)



310

116 BAYEN ET AL.

We refer to such a distribution as a state. In most problems of classical physics it is
enough to consider “distributions” of the form p = &%(p — p’) 6% — §') where
(7', @’) € R® The result of a measurement of the observable f at the time ¢ on the state
pis

o= [fr)ypdp . 2-15)

ExampLE 1. Take H = p¥2m, f = q%; Eq. (2-12) gives the trajectory in N given
by f(1) = (g + tp/m):. Withp = &(p — ') 8%(g — §") one gets{f>, = (7’ + tp'[m)*.

This interpretation lends itself to statistical generalizations though it remains com-
pletely deterministic as long as the first-order equation of motion (2-12) is retained.
Determinism, in the usual narrow sense, is lost when (2-12) is replaced by the nonlocal
equation of motion {2-7). It is then that phenomena such as “spreading of the wave
packet” appear [9].

We return now to the discussion of (2-10). In classical mechanics we are dealing
with the algebra N of functions on phase space with ordinary multiplication of func-
tions. The Poisson bracket {H, f} defines a derivation of this algebra and therefore
so does the time development determined by the equations of motion. In addition,
it is clear that (fg)(t) must perforce be equal to f() g(t) as long as one is dealing with
a single trajectory in phase space and f(z), g(¢), (fg)(¢) are identified with their nume-
rical values at the point on the trajectory labeled by ¢. In Moyal dynamics, on the
other hand, the relevant structure on N is the *-product; the equation of motion
shows that d/df is a derivation of this new structure and f(t) * g(t) = (f * g){t).
The *“paradox” of (2-11) means that trajectories in phase space have no invariant
meaning: if p,§ — P, ( is a canonical transformation, then the trajectory p(z), 4(t)
does not necessarily coincide with the trajectory F(t), O(¢). Of course, this is directly
related to the fact that the system

(P—=F)xp=0=@G—q)*p, (P,3)eR (2-16)

does not possess solutions when # 5 0.

(c) The analog of the formula (2-15) for the measured value {f), of the
observable fe 4 at time ¢ for the state p € A", in Moyal dynamics, is

o= [f0) % p & &3 @17

This can be derived from quentum mechanics by means of the Weyl correspondence
(2-1) with the following interpretations: 5 = Q(p) is a density matrix, f(t) = Q(f(1)),
¢ fyy = tr(fp). If p is pure, p = | $)<e |, then p = (| Y>3 |y is called the Wigner
function for the state | ).

Remark. Equation (2-17) appears in the literature in the equivalent form (2-15}.
The equality [ f+g d® d% = |fg d% d® was discussed in [3] (I, Sect. 12d); it is
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valid for the Moyal *-product (and equivalent orderings related to the Heisenberg

algebras H,), but not for *-products in general. We shall adopt (2-17) in the general
case.

3. General *-Products and the Notion of Preferred Coordinates

(a) The general notion of deformation of symplectic structures studied in the
preceding paper provides the means for a wide generalization of the conventional
process of quantization. Given any classical mechanical system, is it possible to
identify a more or less unique *-product and thus the “correct” quantization scheme ?
The question is not well posed, since the answer must depend on the extent to which
the classical system is well defined and endowed with a complete physical inter-
pretation. We shall suggest a partial answer based on the idea of the existence of a
set of ““distinguished observables® or “preferred coordinates.”

(b) It is curious to notice that the concept of “observable” seems to be more
fully developed in quantum theory than in classical mechanics. Indeed, a fairly
accurate definition in quantum theories without superselection rules is to call
observable every self-adjoint operator. In classical mechanics there has been a tendency
to call observable every function on phase space. To avoid semantic difficulties we
shall call “good observables™ functions of a more restricted class.

If fisa self-adjoint operator in Hilbert space, then one has a 1-parameter group G
of unitary operators {¢*} (€ R). Let f be the function on phase space related to f
by the Weyl correspondence; then f is real and defines an infinitesimal canonical
transformation; that is, a derivation g~ {f, g} of N, and a globally Hamiltonian
vector field on phase space. By the usual exponentiation of vector fields one obtains
an action of G in W. This motivates the following

DEFINITION 2. A function F € N is a good observable if it generates, by the Poisson
bracket, a group of symplectic diffeomorphisms of W.

For a € N we have (I, Sect. 9) called g-invariant any *-product such that

{a.f+g} ={aflxg+f*{a g}, VigeN G-D

Let o7 be the Lie algebra of all ¢ € N such that the *-product is &/-invariant. In the
case of a Vey deformation (defined by the differentiable cochains of increasing order),
we have seen that 7 is always finite dimensional. {It is likely, though not proved,
that & is finite dimensional for more general deformations as well.] Therefore,
every Vey quantization scheme (one formalizable as a Vey deformation) distinguishes
a finite subalgebra of N. This algebra is a subalgebra of the algebra Inv(F, I") that
generates the infinitesimal symplectic transformations, affine for a connection I'
on W.

The Moyal *-product is invariant under Inv(F, I'"), where I" is the usual flat con-
nection on R2. If we take the natural coordinates on R? such that the components
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I}, of I' vanish, then the elements of Inv(F, I') are the polynomials of order <2.
We note that these are all good observables. Furthermore, there are enough of them
to “coordinatize” W; more precisely, Inv(F, I') is “sufficiently large” in the sense of

DEFINITION 3. A finite subalgebra & of N is called sufficiently large if the map
J: W— &* given by x — A,LA(x) is injective. Here {L4} (4 = 1,..., m) is a basis
for o and {A,} is the dual basis for &7*.

If & is sufficiently large we can use the L#’s as a set of (supernumerary) coordinates
for W.

We believe that the identification of good observables must play an important role
in the physical interpretation of any system. We shall therefore limit ourselves to
*-products that are invariant under a sufficiently large algebra of good observables.
Furthermore, we assume that these good observables remain good after quantization;
that is, we assume that the infinitesimal automorphisms of the *.algebra defined
by fi>[axfl, ac s/, fe N, generate a group of automorphisms. The simplest
way to guarantee this is to suppose that [a % f] = {q, f} for a € &7, Yfe N. [Note
that this is implied by the apparently weaker assumption that &7 be preserved by
quantization: [a * b] = {a, b} for a, b € o, provided any fe N can be expressed as
a limit of a sequence of *-polynomials in L%,...,L".]

Thus we feel justified in making the following

DEFINITION 4. A quantization on a symplectic space (W, F) is a *-product defined
on N = C*(W,C), invariant under a sufficiently large finite subalgebra &/ CN
of good observables, such that [a * f] = {a, f} for Yae o, Y¥fe N, where ifi is the
deformation parameter. The elements of & will be called the distinguished observables
or the preferred coordinates for the quantization.

[By associating quantum observables with self-adjoint operators we have deli-
berately, for simplicity, restricted ourselves to the narrow framework of conventional
wisdom. As we know by certain examples in quantum mechanics, and also from
studying the question of integrability of finite-dimensional Lie algebras to Lie groups
(both in geometry and in analysis), it may very well be so that special circumstances
require a more liberal definition of observables. Consequently, it may sometimes be
necessary to extend our definition of good observables to include certain types of
derivations that do not exponentiate to Lie groups of symplectomorphisms.]

According to Definition 4, the problem of quantization of any physical system
may be approached as follows: (i) identify a finite algebra of distinguished observables;
(ii) replace W by the image M of the map J: W — &/*; (iii) select an invariant
*.product on M. This last problem was solved, in principle, under fairly general
conditions, in the preceding paper. We are led to the crux of the problem of quanti-
zation: To quantize a physical system, one must identify a finite algebra o of distin-
guished observables.

That the algebra 4 of distinguished observables plays a very special role in the
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deformed (quantized) theory is evident. Let ae &/ and consider the differential
equation (d/dt)f = [a * f]. This coincides with (d/dt)f = {a, f}. For the Poisson
bracket we have the ordinary derivation rule; therefore this differential equation
defines a group of geometric transformations of phase space. In particular, if the
Hamiltonian H belongs to <7, then the time development of the system can be associated
with a classical trajectory through phase space. The harmonic oscillator is a well-
known example.

(c) The specification of the distinguished observables for a classical physical
system is an important part of the interpretation of it. Since it is impossible to treat
this problem in general we shall discuss only one particular case.

The classical Kepler problem is characterized by the following Hamiltonian

function:
H=}p*— (/). (32

[Units have been chosen so that both physical parameters of the problem are equal
to unity.] Here

P=p-p r=G -Pr >0, (3-3)

and (g, p) € (R® — {0}) x Rs. The singularity of (3-2) at the origin must be removed;
this will be done by a method that goes back to Poincaré and even to Kepler himself.
The equation of motion for fe C*(R¢, C), namely,

(dldt) f = —{H, f}, (3-9)
together with the subsequent restriction to an energy surface:
H—E ~ 0, EeR
(H — E vanishes weakly in Dirac’s sense [11]) can be replaced by
(dlds)f ={r(E—H),f} and r(E—~H)=~0. 3-5

Here s is the mean anomaly introduced by Kepler; comparison of (3-4) and (3-5)
shows that ds/dt = 1/r. In this way the singular Hamiltonian (3-2) is replaced by
the smooth function

r(E~ H) = Er — 4rp2 — 1.
However, singularities are introduced if one evaluates
(d/ds) p = {r(E — H,p} = (E— $p» §/r;

therefore the choice of the p; as preferred coordinates leaves something to be desired.
No singularities appear in

(dlds)q = {r(E — H),3} = rp
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or in higher derivatives such as
(@*ds®)§ = {r(E — H),rp} = Eq + (¢~ p) b — 3r°q. 3N

This strongly suggests that § and rp be taken as distinguished coordinates. These
six functions generate, by the Poisson bracket, a 10-dimensional algebra isomorphic
to the Poincaré algebra, with the basis

{LA} = {qﬁ r; q’pﬂ - qui H rPi} (A = 1:"': 10)‘ (3'8)

This algebra would be a reasonable choice of distinguished observables for many
systems with a 1/r potential. The special case of the Kepler problem, however, is
characterized by a special symmetry—the SO(4) symmetry associated with the Runge—
Lenz constants of the motion [12]. The generators of SO(4) are not included in the
Poincaré algebra spanned by (3-8) and this suggests that the set of distinguished
observables be enlarged. That this can be done is well known; the easiest construction
is found by asking whether the function (3-6) can be included. One finds a 15-dimen-
sional algebra isomorphic to so(4, 2), with the basis (3-8) and

(LY ={r*,p-q. (¢ p) P — %%} (4 =11,.,15). (3-9)

The larger algebra includes the so(4) symmetry algebra of the Hamiltonian.

Although the Poincaré algebra spanned by (3-8) is sufficiently large, there are
advantages to including (3-9) and taking so(4,2) as the algebra of distinguished
observables. Because the function r(E — H) is an element of so(4, 2) (for E fixed
in R), one finds that every element of so(4, 2) has simple harmonic s-dependence,
which trivializes the solution of the equations of motion [13]. In addition,
the arbitrariness in the choice of *-product is always reduced when the algebra of
invariance is enlarged.

The map J defined by (g, p) = ALA(P,d) (4 = 1,...,15) sends W onto a six-
dimensional submanifold of the dual &/* of & = so(4, 2). This is an exceptional
orbit of the coadjoint action ad*y of & in &/* (most orbits are 12-dimensional;
see I, Sect. 11d). The construction of invariant *-products on such orbits is a very
interesting problem.

4. Spectral Theory, a Beginning

(a) For fe N and t € R consider the formal series (see I, Sect. 12)

«©

Exp(f1) = 3, = (i) () @1

n=0 ""*

Assume that there exists a p > 0 such that for | #| < p the power series in 7 converges
to a distribution on W. Suppose also that, for 7 fixed in some complex neighborhood
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of the origin, Exp(ft) considered as a distribution on # has a Fourier-Dirichlet
expansion

Exp(ft) = ) mett/ 42)

A€l

where I is a sequence in C and 7, € N for A€ I In the special case of the Moyal
*-product, if £2( f) is a normal operator in Hilbert space, then I is the spectrum of
this operator and the £2(m,) are the projectors for the spectral decomposition. This
motivates the following definition (we return to the general case):

DEerINITION 5. If f€ N satisfies (4-2) we call I the spectrum of f, any A € I an eigen-
value of f, and m, the projector associated with A.
From (4-1) one obtains

f* Exp(ft) = ih(d/dt) Exp(f1) 4-3)
and from this it follows easily that
.f"< Ty = )\771\ )
f——— Z A7T,\ N (4’4)
Ael
(Y * ™) = aA,\’ﬂ'A .

More generally, we may consider the Fourier transform (in a generalized-function
sense); formally

Exp(f1) = j Mt gy (X). (4-5)

In general, the support of du(A) will be referred to as the spectrum of f. It is the
(Fourier) spectrum of Exp(ft) as a distribution in ¢, in the sense of L. Schwartz.

(b) Let a *-product (f,g)—f*g on N = C=(W, C) be given; then the com-
position law

(fg>fxg=F*]

(f = complex conjugate of f) defines another *-product on N. In particular, let
</ be a real Lie algebra, o* its real dual, and f * g an invariant *-product on some
ad*-invariant submanifold M of «* (see I, Sects. 9-11); then f* g is another
invariant *-product on M.

DEFINITION 6. A *-product is called symmetric if, for f,ge N, we have
fxg=rf%g thatis, if fxg =g *f.

From now on, we limit ourselves to symmetric *-products (the Moyal *-product
is symmetric).

(©) If fin (4-2) is real, then I is symmetric (that is, A\e I = AeT) and 7, = =5 .
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Moreover, if g * g 2> 0 for any real g € N (the expansion (4-2) being supposed unique),
then J and , are real. We suppose now that this is the case, and define N, by (V. € R
if the integral converges, otherwise we shall say that N, is infinite):

N, = j 7, dp(x) (4-6)
w

where du(x) is the Liouville measure on W (with some normalization to be chosen
later). Assuming N, is finite we have a normalized state p, = m,/N,. Now let g be
another function with an expansion of the type (4-2), with real spectrum I’ and pro-
jectors m,/, and define N,/ = [y 7, du(x), p,' = =,//N,’. Measuring the observable
m, in the state p,” and the observable 7.’ in the state p, one obtains

NAmy, = J- my % m du(x) = f m * my dp(x) = N>

The principle of detailed balance thus tells us that N, and N, are (up to a common
factor) the multiplicities of the states p, and p,’; that is, the multiplicities of the
eigenvalues A of fand « of g.

Henceforth, we shall take the Liouville measure du(x) on W to be so normalized
that (4-6) gives precisely the multiplicity of the eigenvalue A of f. In the case of the
Moyal *-product on R2" one verifies easily that N, = tr £(=) if one takes

du(x) = d*p dng)Qmh)r. 47

5. Suggestions

(a) It is apparent that we have tried to avoid dealing with distributions
(generalized functions) on phase space beyond those that can be defined in some sense
by formal power series. Attempts to generalize lead to interesting questions; for
example, we need to know under what conditions associativity is retained. Our
“classical” spectral theory is very far from being developed; one may ask, for example,
under what conditions a distribution f has a real spectrum for a given quantization.

Equations (4-2) and (4-5) pose a problem that seems to have received scant notice
up to now: given a distribution, find the support of its Fourier-Dirichlet series (or
Fourier transform). This question replaces the much more familiar but hardly easier
problem of the determination of spectra of operators. In fact, it seems that all aspects
of operator theory now find analogs in classical analysis.

(b) A promising aspect of the approach to quantization by means of defor-
mation theory is its generality. Symplectic manifolds with nontrivial homology
groups are of interest—sometimes for obvious reasons and sometimes as a result of
the globalization of phase space that is realized by the choice of distinguished observ-
ables. The states are not necessarily one-valued on phase space and this gives rise
to cohomologically nontrivial factors and projective representations of groups of
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invariance. The Bohm-Aharonov effect should provide a very interesting
example [14].

Applications to open systems are also possible. One-differentiable rigorous defor-
mations of the Poisson Lie algebra have been shown to apply to classical systems with
friction or viscosity [15]. [The losses occur as a consequence of giving up the derivation
rule.] Perhaps this type of deformation could be combined with the quantization to
create a coherent description of decaying systems.

(¢) In classical field theory one has a Poisson bracket (in terms of functional
derivatives) [16). Formally it is straightforward to write a corresponding Moyal
bracket [17]. Tt would be worthwhile to develop techniques (on infinite-dimensional
symplectic manifolds) for giving a rigorous meaning to deformations of the Poisson
bracket of classical field theory. An analog of the *-product for infinite-dimensional
symplectic manifolds would also be of interest. It would be natural to begin with an
investigation of semiclassical approximations, including WKB and tree approxi-
mations, in field theories subject to strictly canonical quantization. For want of a
rigorous treatment one could study quantizations at some order of #.

Even more exciting is the possibility of discovering new quantization schemes
for field theories, such as quantum electrodynamics, Yang-Mills theories with or
without a Higgs-Kibble mechanism, theories with soliton or monopole solutions,
for which the conventional canonical quantization is clearly inappropriate. Also,
“quarks” may be ‘“confined’” because quark fields are quantized so as never to create
any free particle states in the first place [18].

(d) Anti-Poisson brackets on Grassmann algebras have been studied recently
[19], after the invention of supersymmetry in dual models [20] and in quantum field
theory [21]. Let N be the Grassmann algebra generated by {8°} (g, b = 1,...,n) and
A a real, constant symmetric 2-tensor; that is a A = {A®} with A® = AkeR.
Define the anti-Poisson bracket for f;, g € N by

{f, &) = fPg = fB. A0, g . (-1

The simplest deformation of N is given by the anti-Moyal *-product defined for
/g€ N by .

fxg=fefg (A = iff2). (5-2)

With this product N is a Clifford algebra. The corresponding deformation of the
anti-Poisson algebra is given by

Lf * g)/ifi = (2/A) f sin((#/2) P)g.

This bracket has the correct symmetry properties and satisfies the (generalized)
Jacobi identity.
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Generalizations are immediate. In the first place, /1 need not be constant. The anti-
Poisson bracket (5-1) satisfies the Jacobi identigy if and only if the (generalized)
Schouten bracket {4, /4] vanishes. The powers of P that appear in (5-2) must be under-
stood in terms of covariant derivatives and conditions are imposed on the connection
by associativity. Applications include quantization of classical (Grassmann algebra
valued) Fermi fields.

() From the general considerations and the particular examples of invariant
*-products developed in I, from the remarks made about our “classical” spectral
theory in this paper, and from the partial success of the Kostant—-Souriau geometrical
approach to group representations, it seems more than evident that *-products have
a promising future in representation theory.

(f) One of the most important theorems of classical mechanics—it can be taken
as the starting point for a formulation of statistical mechanics—is the Liouville
theorem. One form of this theorem states that the generalized velocity vector in phase
space is divergenceless. In ordinary classical mechanics (phase space W = R?*
with {xf} = {g* -** p™}) this reads

—div & = (8/ox*)}{H, x*} = 0.

The validity of this formula follows easily from the equations of motion. In Moyal
mechanics the Liouville theorem continues to hold. The reason for this is that
[H * a)fih = {H, a} for every first-order polynomial a = a;x* in x%,..., x2». [This
statement remains valid for all the generalizations of the Weyl correspondence
considered in the literature.} It is interesting to study the validity of the Liouville
theorem for general deformations and invariant *-products.

() The Weyl application establishes a correspondence between functions
on phase space and linear operators in Hilbert space. To the product of operators
corresponds the *-product of functions and to the commutator of operators corre-
sponds the *-commutator of functions (Moyal bracket). One may ask: What is the
image of the Poisson bracket of functions in the ring of operators ? That is, what is
the contraction limit # — O of the ring of operators of quantum mechanics ? In other
words, we are interested in the empty box in Fig. 1. The application indicated by a
dashed line is defined by commutativity of the diagram. The physics described by the
mathematical structure in the empty box applies to certain situations in quantum
optics in the coherent states formalism.

" Weyl
Poisson bracket application E:

t
Deformations Contractions ‘l
|

- Weyl
oyal bracke application Commutator

FiGure 1
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(h) Finally, it should be noted that our suggestion to regard Moyal mechanics
and its generalizations as autonomous physical theories raises the question of whether
or not all such theories can be cast in a form that fits the general axiomatic formu-
lation of quantum mechanics.

B. CALCULATION OF SPECTRA

6. Harmonic Oscillator

In this section the energy levels of an /-dimensional harmonic oscillator will be
computed with the help of the Moyal product. This will be achieved by considering
the function Exp(Hr) and its Fourier decomposition as explained in the previous
section. Though some of the calculations that will appear may be more or less well
known, it does not seem that such a “classical” treatment exists in the literature.
Here by “classical” we mean that we deal only with functions defined in phase space
and that no operator of the quantum mechanical Hilbert space corresponding to the
problem appears.

(a) One-dimensional case. 'We denote the Hamiltonian function by H; for the
harmonic oscillator

H(p, q) = ¥(p* + 4%

Suppose f: R — C is a C= function. Then f(H) is a C* function defined in phase
space and a straightforward computation gives:

H x f(H) = Hf(H) — (#[4) f'(H) — (#[4) Hf"(H)- &1

Equation (6-1) proves that in this case (& * )" is a function of H only. We can there-
fore write (H%)* = K (H) (n=0,1,...) where K, is a function of one variable.
According to (6-1) we have:

Knn(H) = HK(H) — (##/4) K,/'(H) — (#%/4) HK;(H); (6-2)

K, is therefore a polynomial of degree n and the same parity as n. We are now in
position to formulate:

PROPOSITION 1. For any fixed (p, q) € R2, the power series in t:

¥ 2 () K ) = 3 () 3

nt 1
= n! = n!

»,q

has a radius of convergence equal to . For | t| < 1 one has

Sala) ken=(osg) e (Grang) o
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Proof. Consider the function

(& H) > $(t, H) = (cos %)" exp (2I_hH tan )

which is analytic in the following open set U of C%
U={t,H)eC*|t 5 2k + 1), ke Z}.
Write the Taylor expansion of ¢ with respect to # around the origin:

21 (1 .
6 B = % o () CiEen el <

and remark that ¢ satisfies the following partial differential equation in U:

L 04 i B .Y
P =H ~Tamw Hamr

It is obvious that the coefficients C,, satisfy the recursion relation (6-2) with C, = 1.
It follows that for any n, C, = K, . Compare I, Eq. (12-33).

This pointwise convergence property of the series ,_o (1/n)((Ht/if)*)" allows us
to prove the convergence of (6-3) in the usual 2'(R?) space of distributions in the
variables p and g.

PROPOSITION 2. For fixed te]—m,n[ (or [t| < and teC) the series (6-3)
converges in 2'(R?) for the weak topology to

(cos %)—1 exp [,l_ﬁ (p? + g?® tan —;—] (6-5)

Proof. In fact with respect to the variable H € C the series converges uniformly
on compact sets in the complex plane. It follows that when H is replaced by 4( p® + ¢%
the series converges uniformly on compact sets in the ( p, g) plane.

Now the map

-1
t— (cos é—) exp [—}h— (P* + ¢» tan %]
from the disk | 2| <= into 2'(R?) is weakly analytic and has a (weak) analytic
continuation in the open set U’ = C — {2k + 1)« | k € Z}. We therefore define
Exp(H?) as the distribution (6-5) in the variables ( p, q) for fixed t € U’. One easily checks
that if e U, Im ¢t < 0, the distribution Exp(Ht) € &'(R?), i.e., is tempered.

In order to define the Fourier expansion of Exp(H?) we remark that for fixed
(p, q) € R? the function (6-5) is periodic in 7 with period 4=. However, this function
does not belong to LY(0, 47). We therefore consider (6-5) as a distribution in the
variable ¢ € R. In fact we have:
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ProproSITION 3. For fixed ( p, q) € R? — {0} the function

(cos —é—)_l exp [Tlﬁ" (p* + g% tan —é—]

!

defines a periodic distribution S in 2'(R). Its Fourier expansion is:

w0

S =Y mp, q) e-inti/t (6-6)

n=0

with

mop ) = 2 exp (— % Hlp, 9)) (—17 Ly (3 H(p, 9). ©7)

Here L, = L,° denotes the usual Laguerre polynomial of degree n.

Proof. By a rescaling of the time ¢ we can consider f(7) = (cos 7)~* e**%” with
R = #i7Y(p? + ¢* > 0 and prove the proposition for f. One first shows that f defines
a periodic distribution S, for example, by the formula:

+0 J-ﬂ/2+k1r—z

S =3 (lim

7) dt),

km—op €=>+0 —17/2+kw+(f(T) ¢( ) )

where the test function ¢ € Z(R). This allows us to compute the Fourier coefficients
a, of S and to write S = Y., et If we denote by S the distribution defined on
the one-dimensional torus associated with S, one has a, = <S5, e-*">. The coeffi-
cients a,, are then computed with the help of the function

z: —1 2 -1 7-n

and a suitable contour integration in the complex plane. One finds that a;,.; =
2(—1)* e~RL,(2R) for n > 0 and that all other coefficients vanish.

The Fourier expansion of Exp(H?) being defined, we can now examine the con-
vergence (in the distribution sense, in the variables p and g) for fixed ¢ of the series
(6-6). This leads us to our main proposition:

PROPOSITION 4. For fixed t€ C withImt < 0 and t = Rk + 1)n (ke Z)

— EANS 2H EAYS = —i(n+1/2)t _
Exp(H?) = (cos 2) exp( 7 tan 2) = Eo et (6-8)

the series converging in &'(R?) for the weak topology. Moreover, if t = L the series
converges (in ' (R?)) to Finhd.

595/111/1-9
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Proof. We denote by H,, the Hermite polynomials of degree n and by ¢,, the corre-
sponding orthonormalized function in L2(R): ¢,(x) = w1/4(n12n)-112 H,(x) e~*'/2.
If Te &'(R% one knows that

T= 3 AT, éu, ® bnp bn, @ ¢,

n.n,6N

where the series in the right-hand side is weakly summable. Between Laguerre and
Hermite polynomials the following well-known formula holds:
L+ ) = (=12t 3 —

m=0

m = m)l Hom(x) Hypgm(¥)-

Thus in (6-8) one can express 7, with the help of this formula. One then checks that,
up to an obvious (constant) rescaling of the variables p and g, the result is identical
to the expansion of the left-hand side of (6-8) in tensor products ¢, & ¢,,z of Hermite
functions. The case t = £ is an easy exercise left to the reader.

The last point of Proposition 4 is by no means surprising since lim;,i, 1meco
Exp(Ht) = Fin#ié holds in &/(R?) for the weak topology.

We may now summarize the content of the preceding considerations in the following
way. The distribution Exp(H?) has been constructed with the help of a power series
expansion around the origin. The application f — Exp(Ht) may be considered as a
periodic (with period 4x) distribution-valued function defined in R. It has a Fourier
expansion in ¥'(R? and the only harmonics which occur in this expansion are
e~ntl/t The coefficients =, € &'(R?) which appear in the Fourier series satisfy
(as is easily checked) [gem, dp dg = 2w#i. We thus recover the standard result of
quantum mechanics: E, = (» 4+ }) #, the multiplicity of the corresponding state
being equal to one. Furthermore, it is clear that, via the Weyl correspondence 2,
(6-8) becomes the spectral decomposition of the unitary operator Exp(Ht/ifi) where
H = Q(H), the functions 7, becoming projectors.

Remarks. (1) Obviously if # — 0, Exp(iHt) — exp(—iHt) and the discrete
range of E, becomes the whole half-line [0, +co[. (2) One easily checks that: (i}
m, = (@) % 7y % (@%) where a = 2-/%(q + ip) and the bar denotes complex
conjugation ((@*)* = a®).

(i) Hxm,=m,xH=(n+ 3} #m,,
Ty = T,

Ty * Ty = 8,,,,,77,, .
Conversely one may verify that solutions of the system

Hx = ¢xH=E,
¢ =,
gxi =1,
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analytic near 0 (with respect to p and g) and belonging to &'(R?) exist if and only
if E= @+ 3)# (m=0,1,..). Furthermore, in that case = o, . (3) The spectral
decomposition (6-8) allows us to compute in principle any *-function of H, such as
the resolvent ((H — A)*)~1. One may check that for any Ae C — (A(N -+ 1/2))
the series

T (4 1/2) i — Nty = (H — X) %)

n=0

converges in %'(R?) and that if Re A < %/2 one has

/2 \—2A /R
((H — X) »)1 =241 J; ! exp (— —Zﬁ}-[ cos 0)(tan g) ! de.

(b) I-dimensional case. In this case H = ¥(p®+ q? with p? = Z;_l P
g = Z;.d g2 We also write p - ¢ = Z,l-,l ps9; - For convenience and in connection
with Sections 9-12 of I, we introduce a dynamical Lie algebra: {X = ap® + 28p - q¢ +
vq?la, B, y€ R} is an so(2,1) Lie algebra with respect to Moyal (and Poisson)
bracket. Suppose that f: R — C is a C= function; then as in Section 6a we have
(d=ay —p?:

X« f(X) = Xf(X) — | dBf'(X) — dreXf (X). (6-9)

This proves that for any n = 0, 1, 2,..., (X*)* may be expressed as a function of X
only. Propositions 1 and 2 may be generalized as follows:

PROPOSITION 5. For any ( p, q) € R?, the power series in t

A,

n=0

has a radius of convergence p = w/(2 | d |1/} (0 if d = 0). If | t | < p one has:

Z 1 X g ‘ ,
3 (G ) = eostd 1 O exp [ T tand pro)] e d>0,
= exp(Xifif) if d=0,
= [cosh({ d [ )} exp [ tanh(| A2 0)]  if d < 0.

(6-11)

PRrOPOSITION 6. For fixed te]—p,pl (or |t| <p and t€C) the series (6-10)
converges in 9'(R2Y) for the weak topology to one of the expressions (6-11) according
o the sign of d.

Proofs are analogous to those of Propositions 1 and 2. This allows us to define
Exp(X?) for fixed ¢ e C outside the singularities of the functions (6-11) as in Section 6a.
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Thus Exp(Xt) can be viewed as an element of 2'(R*) and, if X >0, Im¢ <0,
Exp(Xt) e £'(R*).

In case 4 > 0, Fourier analysis may be worked out with the same results as
previously. We consider the case X = H. Obvijously

Exp(Ht) = Exp(H,t) * '+ x Exp(H,t)
= Exp(H,t) ® Exp(Hyt) -~ ® Exp(Hyt)

where H; = 3(ps? + ¢ (1 <j < /). Hence one gets formally:

Exp(HT) = ). ( Y @@ ® vr,.,) eimsia,

n=0 Rytee TN =n

Let L!* denote the generalized Laguerre polynomial of degree n. The known formula:

n
Y L) Lalu(y) = LY (x + 3)

M=0
implies that

= Y m, @7, ® - @ m,, = 2 exp (—— _22_1_) (= L (ili)

Ny et nyp=n h

We thus finally obtain:

PROPOSITION 7. For fixedteCwithImt < Oandt # Qk+ Dw kel

= AN 2H _t_ — o @) ,—iln+i/2)t
Exp(H?) = (cos —2—) exp (7 tan 2) = nz=o e (6-12)

the series (6-12) converging in &' (R?) for the weak topology. Moreover, if t = Lm
the series (6-12) converges (in '(R?)) to (Finh)’ 8.

The proof is analogous to that of Proposition 4.

We have thus obtained the energy levels E, = (n + [f2) /i of an Il-dimensional
(isotropic) harmonic oscillator. The multiplicities of the levels are also the right
ones. For example, if / = 3 one gets [pe 7P p, q) dp dg = (2mh)® }(n + 1)(n + 2).

In the case 4 < 0, Fourier analysis may be worked out directly. To simplify we
take d = —}. A straightforward computation yields

Exp(Xt) == (cosh —é—-)_l exp (2,—2{ tanh %) = f N eMita(A X) dA

where the (real) generalized projectors (A, X) are given by

T2 — M) T2 + iR,

NP I 4ix
7\, X) = (mh) 21 o) )

—%X/% F (.2_ SULIAR Ml
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Here , F; denotes the confluent hypergeometric function. For any A € R, #(A, X(p, ¢)) €
&L(R*) and one has X x7(A, X) = m(A, X) * X = Mr(A, X). Furthermore, if we
define E(}) = fim (e, X) du, the map A+ E()) is a continuous map from R into
&'(R?) endowed with the weak topology, such that lim,, ., E(A\) = 0 and
lim,., £(A) = 1 hold in this topology. In this case also, *-functions or distributions
may be computed. For example, if T € #'(R), T(X =) is defined by the formula (where
T is the Fourier transform of 7T)

T(Xx) = (T, 7(A, X)) = (2m)~VX T, Exp(—shX))

and the function X+ T(X %) is a C* function of polynomial growth. For example,
we have

(X %) = f: ArA, X) d.

Remarks. (1) In the previous analysis we have observed that the function Exp(Ht)
had singularities in . This fact is not surprising. Assume for simplicity that of # =1
and / = 1. In the Hilbert space L% R) one can show that for 0 < |[t| <# (t€ R)
and fe L*R) one has:

(exp(—iH?) f)(x) = exp [—i(sgn ) -g—] (2 | sin ¢ )22

x Lign. [ exp [ (o & — 9 — Gan 02)x + 3)] 700) .

Thus if ¢ — = this expression for exp(—iAt) becomes singular, though the one-
parameter group ¢ — exp(—iHt) of unitary operators is continuous and exp(—iHx) =
—iF? = Q(—ind). (¥ denotes the Fourier transformation.) (2) In order to get
Exp(Xt) we utilized a power series. Another definition of the exponential function,
namely, e* = lim,_.(1 + x/n)", is also available. In fact it is easy to prove that

n
tim (1 + 375) «) = Bxecay)
holds for te C and | t| < = for pointwise convergence and weak convergence in
Z'(R?). (3) The computation of the continuous spectrum (case d < 0) is not only
completely autonomous in our formalism, but also much easier than the corre-
sponding operatorial treatment. (4) The function 3H = 2(p? + ¢? “‘represents”
the usual compact (elliptic) generator of so(2, 1), i.e., the generator with period 2=
when exponentiated in the structure to the group SO(2, 1) (and period 4 in SL(2, R)).
The other two usual (hyperbolic) generators are represented by 2pg and 3( p? — ¢?),
and the lowering and raising generators by (p &+ #¢)% For / = 1, from Remark 2
in Section 6a, one sees that (p — ig)? * 7, x (p + ig)? is proportional to 7.,
The multiplicity being 1 in that case, the *-exponentials of the generators of so(2, 1)
close to the direct sum of two irreducible *-representations of the metaplectic group,
the twofold covering of Sp(2, R) = SL(2, R). The group appears thus nraturally
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in our *-formalism (without any tricks). The spectrum {n 4 J/2} of H splits into
{2m + 12} U {2m + 312}, with m = [n/2].

7. Angular Momentum

In this section we determine the spectrum of the angular momentum 2 and more
generally of the first Casimir element of so(/) (/ > 2) in the specific represen-
tation of this Lie algebra for which the canonical representatives Mj; of so(l) are
My, = g;pr — qeps (1 <J <k < I). The reason for this generalization (which as
will be seen is straightforward) is twofold: (a) The spectral problem of the Hamiltonian
of the hydrogen atom will be shown to be closely linked to that of this first Casimir
in the case [/ = 4. (b) In this specific representation of so(/), the Moyal *-product
defined on the p’s and ¢’s induces an invariant *-product on the Lie algebra so(l)
in the sense of Section 9 of I. In fact it is easily shown that the *-product
M, * - % M, is equal to a polynomial in the elements M), . It is thus interesting
to get in this instance the spectrum of an element of the enveloping algebra.

It is obvious that the functions M, satisfy (for Moyal and Poisson brackets)
the commutation relations of the Lie algebra so(l). The spectrum of M, = L,
may be found in Appendix A-1. Here we shall compute the spectrum of the first
Casimir

C= 3 Wpryp=g—10-1Z

1K<kl

where g2( p, ) = p*q® — (p - q)* and g == 0. In the particular case / = 3, we denote
by L = (L) (1 <j < 3) the three functions M;, and we have

3
C=(Lxp=Y (Lx}=IL— 3,
1
i.e., up to a constant the square of classical angular momentum.
The following considerations will show that the spectrum of C may be deduced

from the results of Section 6. Let f: R, — C be a C= function. To begin with we
compute ( g2) * f( g2). One first calculates

2y — 2 3h2 1 52 202F7( 52
My, % (89 = My (f(8%) — =5~ f(89) — #tg?f"(g?))
and then one gets the cumbersome formula:
(8 */(g) = gD + 2 [0 — ) 2 — 1+ 2) 7] (e
hz
+ #gh (@2 + 91+ 5) T — 28] £(gY)

+ (0 + 4 #gf(g") + A 9(g”) (7-1)

where f',..., f@ are the derivatives of f.
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Let ¢, x € R and consider the function
1\ 2x t
#(0, %) = (cos ) exp [ tan ]

which has been encountered in Section 6 in connection with the / — 2-dimensional
harmonic oscillator. One has

it = 3 a1 () 6o 2

| 2] <, where G, is a polynomial of degree n and the same parity as n (G, = K,
when / = 3),

Lemma 1. For any integer n = 0 the following equality holds

(g8 — Gl =D A4 % )" = g7 Conn( 8)- (7-3)

The proofs of this lemma and of those that follow are given in Appendix A-2.

We thus prove that, up to a constant, the Moyal powers of the Casimir C are the
odd Moyal powers of the Hamiltonian H of the [ — 2-dimensional harmonic oscillator
divided by g (after replacing H by g).

The idea is now to find a *-square root y of g2 — (3] — 4)(#%/4) = C + (I — 2)%#*/4)
in order to compute Exp(ys). We consider the function y = g — (I — 2) #%/4g defined
in the open set U = {(p,q)eR?®|g(p,q) # 0}); we shall prove that (y*)* =
&2 — (3] — 4) #2/4 holds in U. It is legitimate to restrict ourselves to this open set of
R since it is an open symplectic submanifold of R?! with induced symplectic structure.

LeMMA 2. Let Q(y) be any polynomial; denote by ® the function #(p, q) =
O g% p, q)) and by R the polynomial R(x) = Q(x?). Then in U we have

(v *Z)(p, 9) = (Z*y)(p, 9) = (AR g(p, 9)) (7-4)

where A is the differential operator

_u=2r

2 d? d
A=—Fgmtig)+x 7

x

The next step will be to show that (7-4) holds for more general functions of g2.
Up to now we have not used the fact that v depends on #. As a matter of fact, as we
mentioned before, the *-product can be naturally extended from the differentiable
functions N to the formal series E(N, #) in the parameter # of the deformation with
coefficients in N. Let ¢ e C*(U) and suppose first that ¢ does not depend on #;
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y * ¢ will be the power series in 7 which is obtained after a reordering of the powers
of # in the series Yy (1/n)(i#/2)" P*(y, ¢), i.e.,

yed=gb+ 2P -5 (=L g+ 9)

a1 (7)) (e + -2~ 0 (E g 09

‘We have:

LEmMMA 3. Let y = g — [(I — 2)/Ag)#? be defined as before and suppose that
= C<(R,. — {0}) does not depend on #. Denote by ¢ the function ¢( p, 9)= F(g(p, q)).
1en in U we have

(o * )(ps 9) = (¢ x¥)(p, 9) = (AF)(g(p, 9))- (7-6)

Here A is the differential operator defined in Lemma 2.

We finally consider the case when F = S0 AF, is a polynomial in % with coeffi-
cients F, € C*(R,*) and show that (7-6) holds also in this case. In the expansion of
the star product y x F( g) the coefficient of #™ will be after reordering:

(3) 7

X [Pr=i(g, Fy(8)) + ([ — 2)(n — K)n — k — 1) P~*=3(g%, Fy(g))].

(3.)" wn — 1) e (n—k + 1)

I

According to Eq. (A-3) of Appendix A-2 all terms such that # — k& > 2 will cancel.
Hence we get for such an F:

y * F(g) = yF(g) — (B*/8) P*(g, F(g)) = (AF)(g).

We are now in position to prove:

LEMMA 4. In the open set U we have (yx)? = g* — [(3] — 4)/4]1 #* and more

generally
(y*#)* = g'Gua(g) If n21 (7-7)

One has thus shown that the nth Moyal powers of the function y(p, ¢) = g(p, q) —
[(1 — 2)/4] #%¢(p, q)~* are identical to the (n 4 1)th Moyal powers of the Hamiltonian
H of the | — 2-dimensional harmonic oscillator divided by g (after replacing H by g)
and that (y*x )2 = C + [(I — 2)*/4] A%

It is easy to check that the function g~ e L} .(R?). Thus for any integer n > 0,
(y*)* € Z'(R*) and these distributions are tempered. It is now trivial to prove:
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ProprosITION 1. For any (p, q) € U, the power series in s

< 1 (ys \*
71.;0 -’;T (7 *) ».q (7-8)
has a radius of convergence equal to w. If | 5| < one has
o 1 /ys \» & rih 52 2g s
o) =g lg (osg) e (GFung)) (7-9)

Moreover the series (1-8) converges in &'(R*) for the weak topology to the right-hand
side of (7-9) if | s | < and s is fixed.

Proof. Equations (7-2) and (7-7) imply that in U:

L () = 5 () eomte

if 5] < . Suppose now that s is fixed and | s| < 7. It is clear that with respect
to x the series 3 (1/n!)(s/iA)" G,,1(x) converges uniformly on compact sets in R.
Thus for any b > 0 and any € > 0 there exists N, = Ny(e, b) such that for any
n>N, and any xe[—5b,b), | Tmsn (I/mD(s/ify" Gpy(x)] = | R (0| < e. Let
¢ € Z(R¥), K = Supp ¢, b = sup(, gex &(»> 9), and M = [y g(p, q)* dp dq. For
any n = Ny(eM7Y| ¢ {7, b) we have

(e z () Gm(8), Y] < [ 1RGOl 71 1 dp g < .

m!
If | s| < or and sis fixed we can now define

Exp(ys) = &/es(ifig~(s, g))
= ih(2g)(cos s/2)~Y(I' — 2) sin(s/2) cos(s/2) + 2g(iA)™]
X exp((2g/i#) tan s/2). (7-10)
This is an element of Z’(R?") and the process of weak analytic continuation allows, as
in Section 6, to define Exp(ys) by the same formula if se U’ = C—{(2k + 1)= | k € Z}.

It is obvious that if s e U’, Im s < 0, the distribution Exp(ys) is tempered.
Expansion (6-12) may now be used to expand Exp(ys) in a Fourier~Dirichlet series.
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PROPOSITION 2. For fixed s€ C withIm s < 0, one has

Explys) = 3. H,e 5 (7-11)

n=0

where

1T, = 2-tg-tewon(— 1y (n + L5 2) £ (%), (7-12)

the series converging in &' (R*) for the weak topology.

Proof. To simplify the proof we replace g/fi by g and write e~ = 7, IT, = g~1a,(g).
With the help of the generating function of the generalized Laguerre polynomials
it is straightforward to prove that for any s € C with Im s < O one has

Exp(ys) —_ g-xe—m—z)a/z Z an(g) ™.
130

Moreover, Eq. (7-10) allows one to make an estimate of the remainder of the previous
series: for any 7€ C such that |7 | <<r < p < 1 where r and p are arbitrary, any
g =z 0and any n > 0, the following inequality holds:

<2 =yt (0 =t (T + g) e (—28 1 2)(£)

Z a(g) ™ b

k>n

From this inequality it follows immediately that for any ¢ € S(R?)

=2y,
lim <Exp(ys) — v o) ¢,> —0.
no® kgn
Remark. When s — s, e U'0 R (with Im s < 0) one can show that in &'(R%)
one has Exp(ys) — Exp(ys,), and obviously

f Hﬂe—i(n-!--l_TZ):_» % Hne—l(n-}-—l;—z).r.-

n=0 n=0

This gives a meaning to the representation (7-11) of Exp(ys,) by the infinite series
when s = s, and defines a topology for which the series converges.
We have thus obtained the spectrum of y:

spy=§h(n+ 1;2)|n=o,1,...}

and hence the spectrum of C:Sp C = Sp(yx )2 — (I — 2) #2/4 = {n(n + 1 — 2) #*|
n=0,1,.}. In particular if / = 3 we get n(n + 1) #%. Finally one checks that
Cxll,=II,«C=nln+1-2)#1Il,.
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Further formulas concerning functions of C or of ¥ may be obtained with the help
of the I1, given by (7-12). In particular

r*)'=¢g"

(7-13)
w/2
(,y * )—2 —_ 2ﬁ—1g—1 | (sin t)z—s e—(20/R)cost dt.

Formula (7-13) will be used in the treatment of the Kepler problem.

8. Hydrogen Atom

(a) In this section we determine the spectrum of the Hamiltonian H of the
hydrogen atom (H.A.). This will be accomplished with *-product techniques analogous
to those of Sections 6 and 7 but slightly more involved. In fact, the difficulties that we
shall meet with the Moyal *-product will compell us to change the *-product; namely,
to introduce a *-product already described in Sections 8 and 10 of I and associated
with the geometry of the Kepler problem. We start with the well-known classical
so(4) symmetry of the Kepler problem. We reparameterize by stereographic projection
from the cotangent bundle 7*(S%) C R® over the three-dimensional sphere. The
“good” star product, denoted by *’, will then be deduced from the Moyal *-product
in the embedding space R® by suitable restrictions.

It appears that for any / = 2, the Kepler problem in /dimensional configuration
space may be worked out in the same manner as in the case / = 3. The reparameteri-
zation will be done in that case with the cotangent bundie T*(S%) C R?#+2 over the
I-dimensional sphere.

(b) Difficulties with the Moyal *-product and some notations. Let (p, q) € R¥
(=22 and let r=1(g2+ -+ ¢ = |qg|. We consider the following
Hamiltonian

H(p,q) =p*2 —r

and attempt to get its spectrum by *-product algorithms. One may at first think
of (at least) three approaches, all of which meet with difficulties if we keep the usual
Moyal product in RZ.

(i) Direct exponentiation of H as in Sections 6 and 7. This seems for the
moment hopeless: successive *-powers (H )™ of H are not in general functions of H
only; these powers become more and more singular as » increases and no simple

recursion formula seems to hold among them. For example, when 7 = 3 one finds
that

(H*)3=H3—ﬁ2(4:-4 + P2 _ 3(?-4)2),

4r3 4r®
_ 3(p-q® | 3p-grpt 1 P2 (PR 3
(H*)4_H4+h2(_ ré + 2rs +?+_2?‘-—~7r?) 4r8°

Besides, H * ¢ has in general an infinite number of terms and a direct resolution
of the equations H * ¢ = ¢ x H = A¢ seems difficult.
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(i) Direct transcription of the well-known so(2, 1) C se(/ + 1, 2) dynamical
method. In our case this amounts to linearizing, with the help of the generators of
an so(2, 1) Lie algebra, the function U = r x (H — E) or, if one wants to deal with
real functions, V = r¥/2 x (H — E) » r*/2. In the first case, the functions that generate
a representation of the Lie algebra so(2, 1) with the Moyal bracket are

1 2 _ 1 _HApg (—1#
P0*2r*(p +1)—2r(p +1) 2 r 8)‘ s

R a1l #ipg (=D
I"4—§r*(p2 1)-—‘—,2r(p2 1) 5 7 % s 8-1)

S=p-q—it)2 =T — iff2.
The Casimir is
C=ToxP—(IyxP— S} =g— 3 -1
and one has
U=3To+T) —Ely,—Ty)—1

as expected. Let E < 0 and write ¢* = (—2E)'/2 The function Exp(7s) may be easily
computed with the help of the results of Section 6. One verifies that, if fis a poly-
nomial in the variables p and g,

Exp(~Ts) * f( p, q) = f(e'p, €*q) * Exp(—Ts).

Thus this equation will hold on formal series and hence on all (generalized) functions
for which the above *-products are convergent. This allows us to write

Exp(—Ts) * f(p, g) * Exp(Ts) = f(e'p, e7*q).

In the case of U one gets

Exp(—7Ts) * UxExp(Ts) = 3e*(ly + ) — Ee(Iy — Iy — 1
= (—2E)2 Ty — 1.

An analogous manipulation is possible in the case E > 0 (I, replacing I';). However,
though the spectrum of the Casimir is known (Section 7), this is not the case for I .
Here also a direct exponentiation of I'y seems difficult: the *-powers of I, are not
functions of I, only, and no simple recursion formula seems to hold among them.
However, here the even *-powers of I'y are polynomials in p, ¢ and thus regular.

In the case where one considers V, the generators of the Lie algebra so(2, 1) are
r s Dysrtl =/ r 2%, xrit= iy, T=r12%x8x%rl2=pg and an
identical treatment is a priori possible. Though here the generators are real valued,
the difficulties are the same and furthermore all *-powers of the compact generator
are singular.
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In this approach expressions for the generators (M) 0 < o« < B </ +2) of
the Lie algebra so(/ + 1, 2) of the problem are easy to find: My=r*py, My, =T,
Mo 42 = [’0 , My = 9;Px — G Pi>» M, z+1 = %% *(p?) — ps* (T qr*pi) — 3495,
M, T2 T Mf w1 T Gis Mz+1 we =S (1 <j, k<D,

(iii) A third approach, based on the SO(/ + 1) symmetry group of the
problem, is the following. The functions My, = q; pk — g, p; and M, = A; =
—Hp2—Dg;+(p-q)p; (j=1,..,1) define with Moyal or Poisson brackets a
representation of so(/ + 1), the first Casimir of which is

1
Z (M%) + Z (4;%)?

1gi<kgl j=1
=}’ (p® + 12 — B — 2) p* — @) I — 1).
Consider the following function

vo = 3PP+ D2 kr x (p? + 1)/

G

One easily checks that (y, * )% involves only a finite number of terms and one gets
(rox)* = C + (#3401 — 1)*

Furthermore, if E < 0 and e® = (—2E)'/2 (as before) one has Exp(—7s) * (H — E) *
Exp(Ts) = Je®(p® + 1)/ * (1 — e~*(yox)™Y) = (p* + D2 where  (yo*)™ =
2(p® + 1)=172 x r-1 % ( p* + 1)~Y/2 Thus the knowledge of the spectrum of y, would
give the negative part of the spectrum of H. Although here the even powers of y,
are polynomials (in p, q), the situation is not better for computing Exp(y,s). No
simple recursion formula appears for the power (y,* )?".

In this approach the previous representation of so(l + 1) may be enlarged to a
representation of so(l + 1,1). Let M; 00 = ¥ p*+ D g — (p @ p; (j = 1., 1),
Migwo=T=p-q Then {Myp) 1 K« < f <!+ 2)doforma representatlon
of so(l 4 1, 1) with respect to Moyal and Poisson brackets. However, this represen-
tation is not equivalent to that obtained with the generators (M,,) of (ii). In fact
in this case one gets M., x M8 = —(#?%/4) I* whereas for the two representations
of so(/ + 1, 1) with “hatted” generators the value of the same Casimir is equal to
—(ABf4)(I* — 1).

All this strongly suggests that there is something wrong with the *-product of
R we used at first. Hence we shall try to choose a new *-product that is suggested
by the geometry and the symmetry group of the problem: SO(/ + 1). We are working
in 2J-dimensional phase space. This leads to parameterizing the problem with a
manifold on which SO(7 <~ 1) acts naturally. In view of Section 8 of I, the cotangent
bundle T#(S?) appears as a natural condidate.

() The new *-product. In Section 8 of I, we obtained the natural *-product
for the manifold W = T*(S") embedded in R*+*% We utilize the same notations.
Let f, g € N(W) and f, ¢ the corresponding elements of N (differentiable G-invariant
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functions on W, = (R*! — {0}) X R'+*, We denote by x, the new *-product on the
manifold W and *, the Moyal product on the open subset W, of R%+2, We thus get:

[rog= ([ 8)| W (8-2)

If one chooses a chart on W one will get a *-product in an open subset of R2.
This *-product will depend on the choice of coordinates and will be different from the
usual Moyal product in R%. However, it results from our study that Q% and P?
(the third power of the Poisson bracket on R%), restricted to the considered open
subset, will belong to the same (nontrivial) cohomology class, i.e., define equivalent
infinitesimal deformations.

We now give an expression for the product *,, in coordinates. We choose for S°
the stereographic projection from the north pole:

P=10—ata  (1<j<) ®-3)

which is defined on S* — {(0...., 0, 1)} and compute the corresponding cotangent
coordinates. We have:

dpi = (1 — 7)1t + (1 — a+0) 2 f gy,

On §* we shall take the usual line element given by

[
ds® = (1 — 717 3 (dp’)* = 3 gi; dp* dp’,
j=1 4
and this will define the duality between vectors and covectors. The expression of
cotangent coordinates will thus be:

g =Q1—7m)§+m,  A<ji<D (3-4)

Formulas (8-3) and (8-4) define a chart for W on the open subset Q = W —
(B1(0...., 0, 1)) where B is the projection of the bundle W on its base S This chart
will be denoted by ¢ = (2, ) where ¢ is the map (m, £) — ( p, g) defined by (8-3)
and (8-4).

The corresponding curvilinear coordinates on W, defined by the projection ¢ o ¢
from W, on R¥ are:

W= (m| — a0y,
yr=Iml§— ’,’—,,‘,5 my— gt 4 fam (1< <))

These functions are defined on 2 = W, — (R,* - (0,..., 0, 1)) x RHY).
In the following, in order to simplify the writing, we shall no longer make a distinc-
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tion between upper and lower indices, since both p’s and g’s can be considered as
coordinates on W. The inverse map y~*: R? — 2 may be written:

m = 2(p*+ D)7py, Ty = (PP + D7Hp* — 1),
&LE=Hp+ Dagy—(p9) pss éiu=p-4q

Let fe N(W); its expression with the help of the chart ¢ will be the function F e C=(R?*)
which is defined by F( p, q) = f(m, £). The corresponding function which is defined
by F(p, q) = f(u, £). The corresponding function F defined in £ will be the function
E(m, &) = Flx(m), y(m, £)) = f(Im |7m, |w|é—|m| (@ -&m). In the specific
chart ¢ we shall denote the twisted product *, by *’. We thus finally get for two such
functions F, G € C=<(R%)

Fx G = (Fx G| W)yt (8-5)

where *,' is the usual Moyal product on the open subset . It is this product %’
that we shall utilize in order to solve the Kepler problem.

Remark. The functions x’ and y;, together with the two functions x™i(m) =
log|w| and yu,(m, €) = = - £, define a (Poisson) canonical diffeomorphism of
onto R2+2;

141 141
Y dx> ady, =Y dn* A dE,
a=1 a=1 Fo)

and by restriction i is a symplectic diffcomorphism from £ onto R2.
We now study in detail the properties of the product x'. Let F, G € C=(R%); we
define the bracket M’ by

M'(F,G) = (iF)"Y(F ¥ G — G« F).
With respect to this bracket the Heisenberg commutation relations obviously hold:
M (ps,p) = M(Q,9) =0, M(p;,q) =8 (I <jk<]).

Let m,neN! and p™ = pl1- - - pP, g" = g1+ -+ - g7+ Now define a linear
map T by

(1) =1,

(p) =p;» 1<j<],

M) =¢q;, 1<j<
(" * p7) = (g *'Y"™ " o &7 (@ %) H (py ¥ A e K (P #)™

It is obvious that =( p™) = p™ but in general 7(g") # ¢g”. For example, we have

, 2 .
g5 % qr = 9;q;, + ((1 + 2) (pp,»pk 8!7«:) 2, 1<), k<1 (8-6)

2+1)2'—p2+1
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and

! , 2+ (I — 2) p*
Z(‘h*)z=r2——(ﬁ(+—])z)£*ﬁ2-

J=1

One checks that = maps polynomials in the variables p, ¢ into polynomials in ¢’s with
coefficients in the ring of rational fractions in p’s whose denominators are powers
of p? 4 1. If R and S are polynomials we thus get

(R * 8) = (R) *' 7(S) (-7

and one can define easily an extension of this homomorphism to the ring of poly-
nomials in ¢’s whose coefficients are C= functions of p. Moreover, = will map formal
series in p, , g, into formal series in the variables p; , ¢;, and z = (p* 4+ 1)7%, and the
ring of formal series in ¢; with coefficients that are C* functions of p; into itself,
in such a way that (8-7) will hold. This relation (8-7) exhibits the “c-equivalence”
(in the sense of I, Section 7) between the associative algebra deformations defined
by the twisted products x and x'.

Remark. One should note that in relation (8-6) the %’ product of two “position
coordinates” is a function of linear momentum also. This feature is completely
different from what one gets with the usual Moyal product, related by the usual Weyl
correspondence to the operator product. The product *', which is a natural product
for the preferred set of observables for the hydrogen atom problem, though being
(as we shall see) equivalent spectrally to the product x*, differs radically in its func-
tional form from the latter. [It has the correct classical limit when % — 0.]

We now consider the product which is induced on so(/ + 1) by ’. The generators
are My = ¢;pr — Qo Py s Mipu = 4A;= —¥pPP—Dg+(p-9p; (1 <Jj k<)
One checks that on the open set £2 one has (M,z o ¥)(m, &) = €y — €ome (1 < &,
B <1+ 1). We thus have on so(l -+ 1) the *-product mentioned at the beginning
of Section 7 (/ 4 1 replacing /). The product %’ is so(/ + 1) invariant in the sense of
Section 9 of 1, i.e., we have for F, G € C*(R¥)and any X = 3,5 A\,sM,s where A, ;e R

(F+ G, X} =F+{G X} +{F, X} ¥ G.

The spectrum of the generator M, is known from Appendix A-1. In the particular
case in which we are primarily interested (/ = 3), the well-known decomposition
so(4) = s0(3) @ so(3) allows us to exponentiate easily all generators of either so(3)
subalgebra. Let X = Zf,l (/2)( My, + M;) where ( jkm) is an even permutation
of (123) and Z?=1 a;? = 1. Suppose f€ C*(R); then one gets as in Section 6

X f00) = Xf00) = 2 (00 + L xp0)),

Exp(Xs) = (cos —})_4 exp {—— 4ITX tan —i—]
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The results of Section 7 allow us to compute the spectrum of Casimir

2
C= 3 MprMy=T—1+DE

1ga<BCI+1

where I = }r(p* + 1) = | £ | and where the corresponding (G-invariant) function
is I(m, §) = I(x(x), y(m, £)) = (72£2 — (- £)H'2. One finds Sp C = {n(n + [ — 1)A?
n=0,1,.}. The square root (for the product *') of C+ (I — 1)*(#%*4) is
vy =TI — [(I — 1)/4") #%. The Fourier-Dirichlet expansion of the x*'-exponential
Exp(ys) is obtained from formula (7-11):

Exp(ys) = 3 T s (8-8)

where

IT'y = 2D -1 (—1)" (n 44 ) L (4£ =). (8-9)
Moreover for any se U’ with Im s < 0 the distribution Exp(ys) is tempered and

Eq. (8-8) holds in &'(R?) for the weak topology if Im s < 0.
One easily checks that

oy H/n(p - q) dp dq = (Zﬂh)l Nn.l
with

n+1—-2!

Npw=(Q@n+1[— 1)—;1!—(1—_:‘]‘)!—

This is [22] the number of spherical harmonics of degree » on S In particular if
=3 N,,=(+1)2and if =2, N,, = 2n + 1.

Remarks. (1) Consider the subalgebra so(!) C so(/ + 1) spanned by the generators
(My), 1 <j <k <L Itis obvious that on this subalgebra the product induced
by #' is the same as the product induced by the ordinary Moyal product in R? (the
stereographic projection is the identity on a S*-1, considered as embedded in R*+1).
(2) Consider the Lie algebra so(/ + 1, 1) introduced in Section 8b with generators
(M) (1 < o < B <[+ 2). Onehas M, .0 ¢, & = & and

L=iml&—Ttm  G<a<I+D

However, here the product *’ does not induce an invariant *-product (in the sense
of Section 9 of I) on the Lie algebra so(/ + 1, 1). For example, one gets

1
Mo ¥ My = (M: 42)® + ((1 +2) T 7 + 0~ 5) 72

595/111f1-10
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(d) Discrete spectrum of H. We shall solve in this section the problem of the
discrete spectrum of H, i.e., we suppose £ < 0. This will be done in a Schrédinger-
like approach: We Jook for solutions of

(H—-E)y«®=0,

6_3 (8-10)

where the bar denotes complex conjugation. We utilize the notations introduced
in Section 8b: & = (—2E)2, vy =} p*+ D2 xr+(p?+ DY2, T=p-q. We
have

Exp(—Ts) * (H — E) * Exp(Ts) = 3e®(p* + D2 % (1 — e=*(y, )™ + (p* + 1)

@8-11)

Thus if we set
& = (p? + 12 % Exp(—Ts) * D * Exp(Ts) * (p? + 1)*12
we obtain
(1 — ey x) ) xS =0,
F=0
If we introduce ¥ = (yg* )1 % D * (y,* )~ we finally get
(YO - e—e) * V= 0’
(8-12)

Y=V

We now show that the spectrum of «, for Moyal *-product is identical to the spectrum
of y = I — [(I — 1)/4I"] #2 for the *"-product. To begin with we have 7(y, * y,) =
v * 9. In fact

trxrd =7( T (e + 50— 1)

1<a<BI+L

= T M er+Ea—1y

. p 72 ,
- 1g <23:<z+1 (Mag')" -+ 4 (—1F=yxr

We know that
— 2
yx y=3 (n +ITI) #Il,

nx0
where the IT’, are given by Eq. (8-9) and satisfy:
Hln *H,n = H’n = H,n-
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Let us consider the G-invariant function I7',, associated with II’, . We can develop
IT', as a series in the variables m, ¢ with respect to the Moyal *-product in R2+2.
From this follows a development of II’, as a series in the variables p, g with respect
to the twisted product *". Now if we consider the same series in the variables p and ¢
but with respect to Moyal *-product in R?! we obtain a function T, such that

T(Hn =H,n:
o, «I, =1, =1I,.

With the help of these functions we thus get

[ — 142
* Yy = n+ —=—1} A1,
Yo * Vo ’éo( a 2 )
and finally
I—1
= + (7 + All, .
7o go ( 2 )
‘We now prove that we have only plus signs:
— 1
v="3 (r+ d ) AT, (8-13)

n;0
Let f = 27/ p* + 1)1/% % r/%; we have y, = f * f and

%y 5 1Ty = (T 5 ) # (o v 1) = o (n + £5-1) A1,

As mentioned in Section 2¢, if f, g € LY R*) we have:
[ U*2)p, ) dpda= [ (f2)p, ) dp ds.
R2 Rzz
‘We thus obtain

[o@s )« @y dpdg = [ 111, %12 dp dg

=4[+ l;l)hfwﬂ,,dpdq

I—1
2

=i(n+

) #(2mhY N

and hence only the plus sign is admissible since the left-hand side is positive.
Finally we get

1 I—1 .
(—2E) R =e'= (’1 + 5 ) # forall n=0,1,2,..

and in the particular case / = 3, E = —1/2(n + 1)? #% with multiplicity (n + )%
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(e) Continuous spectrum of H. We now consider the case £ >0 and we
write (2E)!/2 = ¢*. We have in this case:

Exp(—Ts) * (H — E) * Exp(Ts) = }e%(p? — 1) — e*r-!

= e2r~1% % (3 — e™) % r-1/2

where o’y = 3r1/2 x (p* — 1) x r12. Thus the problem is now to “diagonalize” the
function 9/, .

We show that the diagonalization of 9, is equivalent to the diagonalization of
T = p - q. Expansion (8-13) for y, allows us to define the function (y, * )"/ by

torr = T (4451 A .

n;0

Consider the function u == 2-1/2(y,* )12 x ( p? + 1)1/2 % r1/2 whose *-inverse is the
function (u* )= = 232r~1/2 % (p? + 1)71/2 % (y, % )1/2 where (y,*)/? is defined by

Gortt = ¥ ((n+L51) #) " 11,

n30

It is trivial to check that one has (1 *)=1 = 2112112 5 ( p? ++ 1)1/2 % (o *)~1/2 and that
if 3y = $ri2 % (p? + 1) % r'/2 one has y, = u * ¥’y * (ux)~%. The functions y'y,
y's, T already mentioned in Section 8b satisfy the commutation relations of so(2, 1)
for Moyal bracket. It follows that y = 7(yy), ya = 7(u *y g x (ux)™), and
7(u % T = (u*)™?) satisfy the commutation relations of so(2, 1) for the bracket M.
Consider the abstract Lie algebra so(2, 1) with the following commutation relations
[, ') = iT", [I"y, T} = —il"y, [T, I"g] =iI";. One has Ad(exp(—itl™y) -
I'y=(cost) Iy + (sint) T'. If | s| < the function Exp(ys) is well defined by
its power series expansion

Bxotrs) = 3, 71 (3 )

n30

and it follows that:
Exp (y -%) *" y, %" Exp (—y %) = 7(u * T * (ux)™).

The function Exp(y(m/2)) may be written with the help of Eq. (8-8):

bolF) - 5 ew (b5 F
=T[Z exp(——i(n+ 1_21)—72T—)H,,].

n30
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We thus finally get T = v % 9y % (v*)~! where

v=(u*)~1*(z exp (—-i(n+ I;])——g—)ﬂn)*u.

n;0

It follows that for the product *’ the spectra of 7(y’,) and #(T) = T are identical.
It is easy to show that this spectrum is the real line. One first proves that if 7%’ ¢, =
¢ ¥ T == A$) (A€ R) with ¢, = ¢,, then for any ae R the function ¢,,,, =
ip & x" ¢ x" | p i satisfies the same equations with A -~ %« instead of A. Thus one
only needs to show that there exists a function ¢, such that T «" ¢y = ¢, ¥’ T = 0,
$o = ¢ - The function ¢, = 7(:(0, T)) where =(0, T) is given by Eqs. (6-13) satisfies
these requirements, and moreover ¢, *’ ¢, = 8(A — p) ¢, . Note that the spectrum
of T = p - g for the Moyal product has been obtained in Section 6b. It is of course
the real line (which shows in this case also that 7 is isospectral). If we denote the
generalized eigenvalue by A € R, we have A = e~* and thus £ = 1/2A2 > 0.

We have thus succeeded in getting the spectrum of the hydrogen atom Hamiltonian.
In our approach the singular Coulomb potential r—! has been replaced by the (probably
smooth) velocity-dependent potential

T(r7) = T(}(p? + 12 = (yo %)™ % (P2 + 1)V3)

’ 1 . ;
= (p2 + 1)1/2 * m * (p2 T ])1/2.

APPENDIX

(A-1) Two-Dimensional Isotropic Oscillator.

In this appendix we consider a two-dimensional harmonic oscillator with
Hamiltonian H = 3(p,2 + p, + ¢, + ¢,%). We also consider the angular momentum
L; = q, p, — g, p; and will give a complete treatment of the twisted diagonalization
problem with respect to the dynamical functions H and L, ; i.e., we solve the eigen-
value problem:

Hx ¢ = ¢* H= E,

Lyx¢=¢ =Ly = M,
¢ =4,

$x b=

In order to do this we introduce the following linear canonical transformation:

(A-1)

gy =2""g +p),  pr= —27(g, — py:
g’y = 271*q; — py), pla=27%q, + pys
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together with the functions:
ar = 2—1/2(q11 + ip,].), Nr = ar *¥a,,
ay = 27Y3%(g’, -+ ip'y), Ny=a,*a.

The functions 4, and a, are (respectively) “creation functions” of left and right
quantas: a, = 27Y%(a; — ia)), a, = 27V%(a, + iay) where a; = 2-12(q, + ip),
J = 1, 2. The functions N, and ¥, commute (for *) and one has

H == Nf + Nl + ],
(A-2)
L3 = N,- - Nz .
It follows from Section 6 that, forse Rand o = rora = [:

Exp ((Na + %) s) = (cos —;—)_1 exp (—i(ZN,, + 1) tan —;—)

i 2(—1) e‘(ZNa+l)Lk(4Na +2) gtk (1/2)s
L0

the series converging in '(R*). Hence if ne N, m = n,n — 2,..., —n, and

4’ = Tagn = 4(—1)m e2HL 12 nsm)(2(H + Ly)) L(l/2)(n—m)(2(H — Ly)

the system (A-1) is satisfied with E = n + 1, M = m.

Conversely the decomposition (A-2) allows one to show that solutions of the system
(A-1), analytic in a neighborhood of 0 and belonging to #'(RY), exist if and only if
E = n is a nonnegative integer, M =m, m = n,n — 2,..., —n. In such a case
¢ =7nm.

(A-2) Proofs of the Lemmas of Section 7

LemMa 1. Consider the function 6(x, t) = (cos(at))* exp[iux tan(at)] where a € Z,
a>0,andpcR* Let|t] <mf2a; then

L) e

IngE:

O(x, t) =

n=0

8 satisfies the partial differential equation

aﬁ_ -1Ya_2q_ —136_._.‘1 x0
I T e pxg.

i
Hence the following recursion relation holds for the polynomials G,, :

Gnﬂ(x) = ha[p.‘le",,” - a"I-“_-IC;n, - [I.XG,,],
Gy(x) = 1.
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It is straightforward to check that the functions S, defined by
Sp(¥) =y HH(—H) " Grpy(3®, n=0 (y>0)

satisfy the relation:

Spse(y) = @®(p2y + 30 — 2) Sp(y) + 22*2(x — 4) y + 3(x — 1)(x — 2) p~2] S,/ (»)
-+ 4a%[(o? — 13x + 27) u® — 291 5,"(y) — 16a2u~2(a — 6) y25,"(y)
+ 162670 ().

On the other hand let (g% — (3] — 4)(#2/4))*)* = T,(g?); Eq. (7-1) implies an obvious
relation for the polynomials T,:

Tui(8D) = (8% — (3] — A)H4) TW(8% + - + #¢°TE( 2.

If @ = p! = #/2 and « = 2 — [ the two previous recursion relations have the same
coeflicients:

8 = Gl — ) )4 = a®’g* + (B — 2) a¥;
A3 — 1) 7%8 — (I + 2) g2] = 2a*[3(x — 1)(x — 2) 2 + 2(x — 4) gI;
Ag2[(I1* + 91 4 5) #%/4 — 2g%] = 4a’g?[(«® — 13 + 27) 2 — 2g?];
(I + 4) #%8* = —16a%u~2(x — 6) g%
f'g® = 16a%u~2g".
Furthermore T(g%) = Sy(g?). Hence To(g?) = Spn(g?) = g7 H(—#)2"1 Cpop(g) =
8 'Gyn41(g) for any n > 0 and the proof is complete.

LemMMA 2. The commutativity of the product is clear. In fact for any function
Je C=(R,) the Moyal bracket M(My.,f(g%) =0 (1 <J,k <I). Hence for any
Integer n > 1 one gets M((g**)", f(g?)) = 0 and the powers (g2*)* generate all poly-
nomials in the variable g?.

Next define recursively the following functions Ry(x) = 1, R, = A™R, (n > 0).
It is straightforward to check that for any n > 0, R,(x) = x~1G,.,(x) where G,
is the polynomial which is defined in expansion (7-2). On the other hand
let Fe C*(R, — {0}); then

(4*F)(g) = (g% — (3] — 4)(#*/4)) x F(g).

To see this one only needs to rewrite Eq. (7-1) with f(g?) = F(g). It follows from
Rynsy = AR, = AR,, and Ry(x) = x — [(I — 2) #2/4x] that

((8? — B — H@*/4)) X" * v 1.4 = (AR )&(p, ).
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This proves relation (7-4) in the case Q(y) = T.(y) for Ry (g) = g 1Gun.\(g) =

T(2%). The powers ((g* — [(3] — 4)/4] #2)%)" generate all polynomials in the variable
22, whence the result.

LEMMA 3. One first computes P*(g, F(g)) and finds
P(g, F(g)) = 2(gF"(g) + IF'(2)).

It follows from Lemma 2 that in the case ¢( p, ) = Q(g*(p, q)), where @ is a poly-
nomial, we have:

y* ¢ = yé — (A%8) P*(g, ¢).

On the other hand, for such a ¢, Eq. (7-5) holds (the series has only a finite number of
nonvanishing terms) and P(g, ¢) = 0. Hence for any n > 2 we get

Prg, ¢)+ (U —2Dnn—1) P%g™, ¢) =0 (A-3)

in the case ¢ = Q(g?. We now show that the previous equality holds for any
¢ = F(g). Let n > 2 be a fixed integer. It is easy to prove that there exists a sequence
of polynomials (P),5, such that the polynomials R, defined by R,(x) = P,(x? have
the following property: on any compact subset of R,* the polynomials
R., Ry ..., R converge uniformly (respectively) to F, F',..., F'® as k — 0. Let
us write R(g(p,q)) = ¢u(p, q). On any compact subset of U the expression
P (g, é) + (I —2)n(n — 1) P*2(g™, ¢,), which is 0, converges uniformly to
Pr(g, )+ (—2)n(n — 1) PP* g™, ¢) as k — co. Hence this last expression is
identically 0 on U.

Lemma 4. Let g(x) = x — [(I — 2)/4x] A% One immediately checks that (Ag)(x) =
x2 — [(3] — 4)/4] #%, which proves the lemma for (yx)®. We prove by induction the
end of the lemma. One has g(x) = x~1G,(x). Suppose that (7-7) holds for n and that
X1Gp41(x) = Ru(x) is a polynomial in ii. Lemma 3 implies:

)t =y x (y*)" = (AR,)(8) = Rpsa(8) = £71G,15(8)
and obviously g-1G, ,(g) is a polynomial in .

Remark. Even powers of y are polynomials in the variable g% and odd powers of y
are quotients of polynomials in the variable g2 by g.
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Abstract, In this Letter we show how for classical canonical transformations we can pass,
with the help of Wigner distribution functions, from their representation U/ in the
configurational Hilbert space to a kernel K in phase space. The latter is a much more
transparent way of looking at representations of canonical transformations, as the classical
limit is reached when i+ 0 and the successive quantum corrections are related with the
powerof 42", n=1,2,....

In recent publications one of the authors (MM) and his collaborators have discussed
extensively the representation in quantum mechanics of non-linear and non-bijective
canonical transformations (Mello and Moshinsky 1975, Kramer et al 1978, Moshinsky
and Seligman 1978, 1979a, b). The representations, to be denoted by U, are given in
definite Hilbert spaces like, for example, the one associated with coordinate g ; thus the
matrix elements (q'|U|q") related with specific canonical transformations were derived
explicitly. It is not easy though to see from these matrix elements the quantum
modifications to the canonical transformations, as the latter are formulated in phase
space rather than in Hilbert space. Thus itis interesting to discuss the representation of
canonical transformations in the phase space version of quantum mechanics that was
developed originally by Wigner (1932), with the help of the distribution functions that
now bear his name. We shall do this in the present Letter, illustrating the analysis with
the representations of some simple examples of canonical transformations.

We begin by recalling the definition of Wigner’s distribution function f(q, p) for a
given wavefunction ¢(q), i.e.

fla,p)=(mt)™" <a//|q +yXq -yl exv Y) gy, 93]
h

where we use Dirac’s notation (ql://) = y(q), (¢|q)=¥*(q), and restrict ourselves to a
single degree of freedom. As is well known (Wigner 1932), the integration of f(q, p)
with respect to p or q gives the probability density for the state |i#) in configuration or
momentum space respectively.
We consider now a canonical transformation
30 aP 9Q BP
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under which a classical distribution function f(g, p) would of course transform into
F(q, p) given by

F(q,p)=flQ(q, p), P(q,p)]. (3)

In quantum mechanics though, the state |¢) transforms into (Mello and Moshinsky
1975, Kramer et al 1978, Moshinsky and Seligman 1978, 1979a, b)

)= W)= Uly), (4)
and thus

F(g,p)=(mh)" J’ . (Wlg +yXq —y|¥) exp(%?x) dy

o«

= (k) ”I dz.dydz. <ylz. Xz, {U"|g +y)

—00

) 5)

h

Writing z, = ¢q'+y' when it is associated with ¢, and z. =q'+ 7' when it is associated
with U, and integrating over q’, y’, y', y, with the extra factor

K 2i I( !_—I) ,
m(——-—p yh : )dp,

x (g = y|Ulz_Yz_|¢) exp(

50— ) = ()™ J'

—0

we immediately arrive at the relation

-]

F(q,p)= ” dq’'dp' f(q', p'Xa'P'|K lqp), (6)

-0

in which the kernel K is given by

@p|Klapy=21"" [ [ ay ay' @ +y 10l +p)

—a0

i(2py —2p’y'))

x(a=y|Ulq'~y') exp( 2 ™

where from (3) we expect that
lim(q'p'|Kqp) = 8(q' - Q(q, P)I8[p' -~ P(g, p)]. (8)

To obtain K we must known U which, ir principle (Dirac 1947), is determined by
the equations (Mello and Moshinsky 1975, Kramer er al 1978, Moshinsky and
Seligman 1978, 1979a, b)

Q(q, p)=UqU", P(q, p) = UpU", 9

where g, p are now quantum mechanical operators. As U'U = I, we can pass U to the
left-hand side, and taking matrix elements between a bra {g'| and a ket |q”) obtain the
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equations (Mello and Moshinsky 1975, Kramer et al 1978, Moshinsky and Seligman
1978, 1979a, b)

’ h a ’ " " ! "
O(q,; a—q,)<q |Ula") =q"(q'|Ulq"), (10a)
P( !ﬁ a)( ;IUl //)___ﬁ d ( ,lUI u> (10b)
D7 5 )1V =77 ggra IVl

Of course these equations only make sense when Q, P are well defined operators;
otherwise, more sophisticated procedures need to be used (Moshinsky and Seligman
1978, 1979a, b).

We shall now consider two simple examples of canonical transformations. The first
will be the linear one

Q = aq + bp, P=cq+dp; ad—bc=1, b>0, (11)
where the constants are all real. We have then (Moshinsky and Quesne 1971)
(@'|U|q"y = (2mb)"* exp[(—i/2b)(aq” - 24'q" + dg")), (12)

which satisfies equations (10) if we note from (11) that ¢ = (ad — 1)/b. Introducing (12)
in (7) and using the relation {(q'|U"|q") = (q"|U|q')* we immediately obtain

(q'p'IK|qp)=8(q' —(aq + bp)16[p' - (cq +dp)]. (13)

Thus for the linear canonical transformation the kernel coincides with its classical limit
(8), in agreement with the fact that for this type of transformation Poisson and Moyal
(1949) brackets coincide.

In the second example we take Q as the Hamiltonian of a linear potential (Landau
and Lifshitz 1958), and thus we have the canonical transformation

Q=(p*/2m)~Foq, P=—p/F, (14)

where m is the mass, F, a constant of the dimension of force, and {Q, P} =1. Equation
(10a) leads then to an Airy function (LL.andau and Lifshitz 1958), and we also satisfy
(106) and get a normalised (Landau and Lifshitz 1958) unitary representation if we
write

(q'|Ulg") = AD(-¢), (15a)
£=[q'+(q"/Fo))2mFo/#)'", (15b)
A=(2m)1/377_—1/2F(~)-1/6ﬁ-—2/3’ (15C)
&(g) = (dr)" YV Zf exp{i[(x>/3)+ ugl} du. (15d)

Substituting (15a) into (7) and making use of (15d) we can show straightforwardly that
for the canonical transformation (14) the kernel X becomes
1/3 2

)4 p

—~Foq — )]}6( ’+—>. 16
(2m 0d—4q Pt e, (16)
We note first that when # - 0 the function ® becomes (Landau and Lifshitz 1958) either

very small or very rapidly oscillating except wgen q' =(p%/2m)— Foq. Furthermore,
with the help of (15d) we easily see that 7 V2%, ®(x)dx = 1. Thus the expression in

(q'p'|Klqp)= {2(%) 1/371—1/2(1:[2(#3-)
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{ }in (16) tends to a & function in the limit - 0, so that the kernel K goes into its
classical limit (8), where Q and P are given by (14).

To see what the quantum corrections are, it is best to apply the K of (16) to a smooth
distribution function f(g, p), rather than study it directly. We choose

f(q, p) = (mab)™* exp[—(q*/a®) - (p*/6%)], (17)

where from (1) we will have the relation b = #i/a if f is obtained from a Gaussian state in
configuration space. Again using (15d) we obtain for the new distribution function
F(q, p) the expression

- & WFYmT ¥ (-DPQ0Q)'3k)!
Flg,p)=f(Q.P) X ( L, anGkn/2kF

PR ), a8
3k—1teven

where Q, P are given by (14). As indicated in (3), f(Q, P) is theclassical change in the

distribution function due to the canonical transformation, and it will be the only one

remaining in (18) if #-> 0. Thus the terms associated with the higher powers of #2

indicate the successive quantum corrections to the distribution function when we

perform the canonical transformation.

The examples discussed in this Letter are very specialised, but they clearly indicate
the procedure to be followed in general. Among the more interesting cases where this
formalism can be applied are those of non-bijective (Kramer et al 1978, Moshinsky and
Seligman 1978, 1979a, b) canonical transformations. The concepts of ambiguity group
and ambiguity spin used in the derivation of the representation U can then give
interesting insights into the structure of phase space as a carrier of canonical trans-
formations, as will be discussed in future publications,

The authors are indebted to Professor E P Wigner for a stimulating presentation of his
distribution function formalism and helpful discussions, during his recent stay in
Mexico.
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Wigner’s phase space function and atomic structure
I. The hydrogen atom ground state
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Department of Chemical Physics, Technical University of Denmark,
DTH 301, DK-2800 Lyngby, Denmark

(Received 25 May 1982 ; accepted 29 June 1982)

We have constructed the Wigner function for the ground state of the
hydrogen atom and analysed its variation over phase space. By means of
the Weyl correspondence between operators and phase space functions we
have then studied the description of angular momenturmn and resolved a
dilemma in the comparison with early quantum mechanics. Finally we have
discussed the introduction of local energy densities in coordinate space and
demonstrated the validity of a local virial theorem.

1. INTRODUCTION

This is the first of a series of papers devoted to the phase space description
of atomnic and molecular systems. Phase space representations of quantum
mechanics have been extensively discussed since the classical works by Weyl
[1], Wigner [2], Groenewold [3] and Moyal [4]. They have been applied in
quantum statistical studies of transport processes and radiation (see, for example,
[5]and [6]), and in treatments of molecular and nuclear dynamics (for example,
[7-10]). They have, however, not yet been used in such detailed theories as
the theories of atomic and molecular electronic structure.

In this and forthcoming papers we shall investigate the possibility of ex-
tending the application of phase space representations to such theories as well,
Very accurate wavefunctions are now available for all atoms and for a large class
of molecules. These wavefunctions have always been generated in coordinate
space, but there has been a considerable interest in their momentum space
representatives as well. The use of phase space representations allows one to
include the coordinate and momentum characteristics in a single picture, and
hence it may serve to improve our understanding of the dynamical behaviour
of electrons in atoms and molecules,

The phase space formulation of quantum mechanics treats states and
transitions in an equivalent manner. Thus, there is a phase space function
associated with every quantum state and with every quantum transition as well.
This function is the Wigner function.

In the present paper we shall only consider Wigner functions associated
with states. Operationally, such functions play the role of probability densities
in phase space. The values of the functions are, however, not restricted to being
positive or zero, although they are always real. Hence, one may not interpret
the functions as probability densities. Such an interpretation would of course
also be inconsistent with the uncertainty principle.

0026-8976/82/4705 1001 $04-00 © 1982 Taylor & Francis Ltd
M.P. 2K
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If a Wigner function cannot be interpreted as a probability density, how
may it then be interpreted ? This question, which has attracted considerable
attention, was discussed in a recent article by one of the authors {11]. The
conclusion is that one must reconsider the réle played by a point in phase space.
The significance of such a point is not, as in classical mechanics, that it defines
a simultaneous position and momentum of a particle, It is instead that it
defines an inversion operator, the so-called Wigner operator [12, 13].

The properties of the Wigner operator and the group theoretical basis it
lends to the phase space representation of quantum mechanics has been
thoroughly discussed by one of us [14], but since only one-dimensional motion
was considered we shall here list 2 few of the relevant expressions for a particle
in three dimensions.

The inversion operator defined by the phase space point (r, p) is

I1(r, p)=<%l>3 { § dudvexp [;—;(r.u+p.v)]

X exp [-%(e . u+ﬁ.v):f (1)

with the caret (") denoting operators. The Wigner function associated with a
normalized state vector |4 is

fe 0)=(3 ) o 1nce 1> @)

It is normalized such that

§§ f(r,p)drdp=1. (3)
If y(r) and ¢(p) are the coordinate and momentum wavefunctions, respectively,
that is
OERUIN (4)
$(p)=<p|¥>, ()
then we may also write
2\? ) 2
ftr p)=(z) j ar ¢<r—r'>*¢(r+r>exp(—g pr) ©)
and
2\3 , , 21 ,
fte, p>=(z> j o do-preereem (Frow) O
Further we have the relations
§ dp f(r, p)=i(r)*¢(r), (8)
§ drf(r, p)=9¢(p)*é(p), %)
and
(plajg> = 5.5 dr dp f(r, p)a(r, p), (10)

where a(r, p) is the Weyl transform [1] of the operator 4, as discussed in the
Appendix.
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It is the relations (3) and (8)~(10) that show how the Wigner function plays
the role of a probability density in an operational sense, Let us also note that
the eigenvalues of fI(r, p) must be + 1, since it is an inversion operator, Hence
[13] we get that

e, wri<(5) an

and consequently that f(r, p) must have support in a volume not smaller than
(R[2).

With the value of f at the point (r, p) being equal to 2/A times the overlap
between 1) and its mirror image with respect to (r, p), we may say that f(r, p)
is a measure of the way the point (r, p) supports the given quantum state,
Similarly, we may talk about the way a certain region or a certain trajectory in
phase space supports a state. A proper use of this kind of language leads to an
integrated description of the wave and particle characteristics of quantum states,

It is the purpose of the present paper to show how this kind of description
works for the ground state of the hydrogen atom,

2. THE WIGNER FUNCTION FOR ls ORBITALS

In what follows we shall use atomic units, and hence put m, ¢ and # equal to
one, m being the electron’s mass and —e its charge. We shall consider nuclear
masses as infinite and exclude spin and relativistic effects. The hamiltonian
for a hydrogen-like atom with nuclear charge Z is then

52z
H= 57 (12)

The coordinate wavefunction for the ground state has the well known form

VAl 1/2
i) (£)" exp (= 20 (13)
and the corresponding momentum wavefunction is [15]
_2v2 g, ]

b1(p)= = 4 (P2 + 22 (14)

Thus we obtain the following equivalent expressions for the Wigner function
by using equations (6) and (7)

Fult, £)= 25 § d' exp (= Zlr—r]) exp (~ Zle+¥ ) exp (~2ip ) (15)
and
8Z°% , _ . /
fuo(r, PYy=—5§ dp’ (p—-p' )R+ Z%2((p+p)+ 28] % exp (2ir . p').  (16)

Neither of the integrals involved can be evaluated in a closed analytical form
and the Wigner function is consequently not expressible in terms of standard
functions. This is in accordance with the fact that it satisfies a differential
equation of infinitely high order [16], while the usual standard functions satisfy
differential equations of the first or second order.

2k 2



353

1004 J. P. Dahl and M. Springborg

The integrals (15) and (16) are, however, not newcomers in the theory of
electronic structures. The integral (15) is, for a fixed value of r, the Fourier
transform of the product of two 1s orbitals centred around the points —r and r
respectively. Thus itis recognized as a generalized scattering factor in the theory
of X-ray diffraction of molecular crystals and as a standard integral in those
band theories of solids that are based on Fourier transform methods. Several
procedures have, accordingly, been devised for the evaluation of this integral
by methods of approximation.,

Thus, McWeeny [17] and Silverstone [18] have studied methods in which
one orbital is expanded in an infinite series about the origin of the other. Such
methods are only rapidly convergent for small values of r, and hence they are
not applicable in the present context where all values of r must be considered.
Other methods implying the summation of an infinite series or the numerical
evaluation of an integral have been suggested by several authors ([19-21] and
references therein). Although very powerful for single values of r where the
accuracy can be readily assessed, these methods are again not easily applied when
r is allowed to vary freely.

The natural procedure to follow in the present context is to approximate
the function (13) by a finite series of gaussians and insert this series in (15).
The resulting integrals can then be evaluated analytically. This method is
capable of giving a good representation of the Wigner function for all values of
r and p, and it can easily be extended to other orbitals than the 1s orbital.
Generalized scattering factors have been calculated along these lines by McWeeny
[22] and Stewart [23].

We write accordingly

M
P B0(r) = 3 e X(r) (17)
i=1
with X,(r) being a normalized gaussian
2oy \ 314
Xi(r)=(—;-i> exp { —oy?). (18)
This gives
M M
f1s99(e, p) = ,21 e Py(r, p)+ 21 ciei{Py(r, p)+ By p)} - (19)
182 1>)=
where we have used the definition
1 , S
Py(r, P = § dr' X(r=r)Xr+v') exp (~2ip . '), (20)

A straightforward integration results in

1 o \8i 2 '
Py(r, p)=— <—’yL> exp (~ y,7%) exp (—dj:_ °‘i> exp (2ryp . v)  (21)

7T\ o+ oy
in which
4‘&1"“:;
- 22
y’bj .05¢+°‘7 ( )
and
n- j_ii:_“f. (23)

_a¢+a7»
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Hence we get that
1 M P\ 2 XM vy \3
0, )= 5 et exp (~2artemp (£ )45 B ey ()

4 i>fml
P2
°‘1+°‘1) cos (Zryp.r).  (24)
In the following sections we shall study this expression for the hydrogen
atom, using an M =10 representation of the 1s orbital determined by Duijneveldt
[24]. 'This is the extremely good approximation to the true 1s orbital, leading
for instance to an energy which only deviates 0-00015 per cent from the true
value. The parameters defining the expansion are reproduced in table 1.

X exp (— yr?) exp ( —

Table 1. Gaussian approximation to the 1s hydrogen orbital [24].

i atfagt ct
1 0-062157 0-107330
2 0-138046 0-339658
3 0-304802 0-352349
4 0-710716 0213239
5 1-794924 0-090342
6 4.915078 0-030540
7 15-018344 0-008863
8 54-698039 0-002094
9 254.017712 0-000372
10 1776-775559 0-000044

We shall also make certain comparisons with the variationally determined
M =1 representation of the hydrogen 1sorbital. As is well known, this approxi-
mation is obtained for a=8/97 =0-282942 q,~2.

3, A CHANGE OF VARIABLES

The Wigner function is a function in six-dimensional phase space. It is,
however, obvious from (24) that f,(r, p) only depends upon the three quantities
7, p and u, with u being the angle between the vectors r and p.  Let us therefore
define new phase space variables instead of

r={(%, £z %) (25)
and

P=(P1, Do PB) (26)

by introducing three mutually orthogonal unit vectors [25]

1 rp ]
YT sinw2\r 3/
1 r p
= L 27
o2 2cosu/2(r+p>’ L @7)

rXp=e; Xe,

e;=

rpsinu
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These vectors define a right handed coordinate system § in ordinary three-

space. The orientation of S with respect to a laboratory system .S, may be
specified by three Euler angles «, f, y such that S is obtained from S, by

(1) arotation about the third axis of S, through the angle «,
(2) arotation about the new second axis through the angle 8§,
(3) a rotation about the new third axis through the angle y.
The following relations are then valid :

. u . u ]
By= -1 l:cos « cos f sin (y—--z-)+sm @ CoS <y-§>]
Xp= —7 [sin « cos f sin (y—%)—-cos o cos (y—g)] (28)
#y=7sin B sin ( —g)

. u\ u\7 )
P=-p l:cos a cos B sin <y+§>+sm o €os <y+§>:|

. . u u
o= —p [smucosﬁsm (y+§)-—cosoccos (y+-2->:| L (29)

py=p sin fsin (y+§>

—

and

dr dp=r*dr p* dp sin u du sin 8 dB do dy. (30)

The quantities 7, p, #, o, B, y are our new phase space variables; 7 and p
range from 0 to o, # and 8 from 0 to =, « and y from 0 to 2.

We shall refer to the plane defined by r and p as the dynamical plane. Its
normal, which is es, has the spherical polar coordinates (B, «). The angle y
will be called the dynamical angle.

With these designations we may express the fact that f,, is independent of
a, B and y by saying, that all dynamical planes and all dynamical angles are
equivalent. By displaying the dependence on r, p and u we obtain a complete
picture of the 1s-state in the phase space representation. Liet us first consider
the picture obtained in the M =1 approximation,

4, THE SINGLE GAUSSIAN APPROXIMATION TO THE ls STATE
This simple approximation corresponds to a coordinate wavefunction of the

form (18), that is
0= (%) oxp (e 61)

with o =8/97=0-282942 a,~%. 'The corresponding momentum wavefunction is

$1.(p) = (ﬁ)m exp <-££> (32)
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and the Wigner function (24) becomes
1 p?
Fra @ (r, p)="?i exp ( — 2ar?) exp <_§E)' (33)
This function is not only independent of o, 8 and . It is independent of « as

well. By integrating it over «, B, y, % and multiplying it with 7% p? we obtain
the function

16 2
F, (7, p)=— 12 p? exp (— 2o%) exp  —2- (34)
™ 2&
which is normalized such that
o <
[ § B, p) dr dp=1. (35)
0.0 .5 .0 1.5 20 25 3.0 3.5 4.0
4.0 3.0
plogh
3.5 3.5
2.0 3.0
2.5 2.5
2.0 2.0
1.5 1.5
1.0 1.0
5 .5
0.0 : 0.0
0.0 .5 1.0 1.5 2.0 25 2.0 35 40
t/ay

Figure 1. Contour map of the function Fis0(, p). The function attains its maximum
value, 0-6893 #~1, at the point (rq, po)=(1:3293 gy, 0-7523 a4~} #). Starting from
the maximum, contours have been drawn at 0-6, 03, 0-1, 0-06, 0-03, 0-01, 0-006 £71,

The function Fy,*(r, p) is displayed in figure 1 through a contour map.
As is evident from (34) it is everywhere non-negative. It has 2 maximum at
the point

1

(o) Po) = (7(2—0‘—), \/(Zoc)) =(1-3293 ay?, 07523 ay 71 %) (36)

the maximum value being

16
Fi Wrey po)=—

me

=0-6893 %%, (37)
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It is obvious that Fy,%)r, p) gives us complete information about the 1s
state in the single gaussian approximation. Thus, integration over p gives the
radial density in configuration space (with maximum at 7¢) and integration over
7 gives the radial density in momentum space (with maximum at p,). Actually
F,® is nothing but the product of these two radial densities.

As far as the function f,,M)(r, p) itself is concerned, we note that it attains
its maximum at the origin (0, 0). The ls state is symmetric with respect to
inversion in this point, and the corresponding value of f,,® is accordingly the
largest possible one, which from the relation (11) is known to be (2/A)?, that is,
(1/7)® A% in atomic units,

5. Tue M =10 DESCRIPTION OF THE ls STATE

This description, whose parameters are listed in table 1, is as previously
mentioned an exceedingly accurate one. The Wigner function, for which we
have the expression (24), is no longer independent of # and hence we cannot
display all its features by means of a single contour map of the type shown in
figure 1. A complete picture requires the drawing of a map for each value of u
in the interval 0<u<m/2. As is obvious from the expression (24), we obtain
the same maps for # and 7 —u.

It is still expedient to integrate the expression (24) over «, 8 and y and to
multiply with 72 p% Hence we obtain the function

Fii(r, p, u) =812 p? f1,0%(r, p). (38)

0.0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

3.0

2.5

2.0

1.5

0.0 .5 1.0 15 20 25 30 35 40
f/Oo

Figure 2. Contour map of the function Fis(r,p, u) for u=0. Starting from the nodal
curves (dashed lines, contour value (0-0)) contours have been drawn at 0-01, 0-03,
0:1, 0-2 #~? (solid lines), — 001, ~0:03 #~* (dotted lines).
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0.0
4.0

p/agh

3.5

3.0

2.5

2.0

0.0 .5 1.0 .5 26 25 30 3.5 4.0
Figure 3. As figure 2 except u= /4.

0.0 .5 .0

1.5 2.0 2.5 3.0 a5 4
3.0 4.0
a/ca"h
3.5 3.5
3.0 3.0
2.8 2.5
2.0 2.0
1.5 1.5

"0 .5 1.0 1.5 20 25 3.0 3.5 4.0

Figure 4. Contour map of the function Fulr,p, u) for u==/2. Starting from the
maximum (g, )= (1-408 a4, 0-759 a,"1 £), contours have been drawn at 0-3, 0.1,

0-06, 0-03, 0-01, 0-006, 0-003 &,



359

1010 J. P. Dahl and M. Springborg

This function is displayed in figures 2, 3 and 4 for « equal to 0, /4 and =/2
respectively. For u=m/2 it is non-negative everywhere, but for all other values
of u it has negative as well as positive regions.

For several purposes it is sufficient to know the function obtained from (38)
by integrating over u. We shall call this function the radial phase space
function and designate it Fy(r, p). It satisfies the normalization condition
(35). From (24) it is found to be

16 M PZ
Fy(r, p)=—1p* E c;2exp (~2ap*) exp | —5—
m i=1 20{11

M 3/
+§_2 Pt Y ey ( Yy )
Y ia

iyl o+ oy

<exp (gt enp (-2 irar), (39

where

ju) =22 (40)

is a spherical Bessel function.

0.0 .5 1.0 1.5 20 25 3.0 15 a0
r/8,

Figure 5. Contour map of the function Fis(r,p). The function attains its maximum
value, 0-5617 #-1, at the point (7o, po)=(1:30 ay, 0-68 a,~* #). Starting from the
nodal curves (dashed lines, contour value 0-0), contours have been drawn at 001,
0-02, 0-05, 0-1, 0-2, 0-5 #~* (solid lines), —0-01 #-? (dotted lines).
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The function F,(r, p) is displayed in figure 5. It is characterized by a
dominant region in which it is positive, and by an oscillatory behaviour outside
this region. The amplitudes of the oscillations are, however, fairly small (see
tabl(;: 2), but they are definitely not due to lack of accuracy in the wavefunction
used.

Table 2, Selected values of the function Fislr, p) for r= p.

(rjan)=(p/a,™ %) Faylr, p)/i?

0-0 0:0

03 0-0326
0-6 0:2676
0-9 0-4648
1.2 0-3015
1.5 0-0473
1-8 -0-0047
21 0-0081
2-4 -~0:0031
2.7 0-0014
3.0 —-0:00063
3.3 0-00021

When the product of p and r is large, a regular albeit weak damped wave is
disclosed by figure 5. The presence of such a wave is readily understandable
from the expression (39). When both r and p are large, the dominant terms in
(39) will be cross terms for which one o is large and the other « is small, since
it is only for such terms that both y;; and 1/(e;+0,) become small and hence
lead to slowly decaying exponentials. Since (23) shows that |r;|~ 1 when one
« value is much larger than the other, we find that the relevant Bessel functions
in (39) approach jfy(pr), and this leads to a damped wave as observed.

Applying a similar argument to the expression (24) shows that the contour
maps for the functions F(r, p, #) must disclose damped oscillations in cos (Z2p . r)
when both p and » are large. That this is in fact the case is apparent from
figures 2 and 3. In figure 4, cos (2p.r) equals 1 for all » and p (the wave-
length becomes infinite), and the phase space function is accordingly non-
negative everywhere.

The damped oscillations which we have discussed will, of course, have their
counterparts in the theory of generalized scattering factors (cf. §2). The
appearance of the oscillations in that context has been noticed and discussed by
Avery [26], on the basis of arguments quite different from ours,

In closing this section it is worthwhile drawing attention to the complexity
of the exact phase space function, as compared to the simplicity of the approxi-
mate phase space function discussed in the previous section, and a natural
question presents itself. What must a wavefunction look like in order that the
associated Wigner function be non-negative everywhere? Hudson [27] has
given a mathematical answer to this question for one-dimensional motion. His
analysis showed that the wavefunction must have the form

Y(x) =exp [ — $(ax?+ 2bx +c)], (41)
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where a, b are arbitrary complex numbers with Rea>0 and the complex
number ¢ is chosen so as to ensure correct normalization. When Im a is zero,
this wavefunction describes a minimum uncertainty state [28] in one dimension.
The conclusions of Hudson may probably be extended to three dimensions
in a straightforward manner. That the wavefunction (31) describes a minimum
uncertainty state in three dimensions is in accordance with this assumption.

6. THE DOMINANT SUBSPACE AND THE CLASSICAL SUBSPACE

The function Fyi(r, p) of (39) and figure 5 was obtained from the function
F{r, p,u) of (38) by integrating over . It is interesting to integrate over r
and p instead to obtain a function Fy,(u), normalized such that

of Fyy(u) sin u du=1. (42)

The expression for this function is found to be

10 10
Fi(u)y=3% Y, ¢+ Y ci0;2%(0y—27,% cos® u)[(oy;+ 7,2 cost u)i2 - (43)
=1 i>7wl

with 7;; as defined by (23) and

Aoy
T o) 1 (44)
Figure 6 shows the functions Fy () and Fy(u)sin #. Both functions have
a sharp maximum at u=n/2.
Thus, the condition u=n[2 defines a dominant subspace in which the Wigner
function finds it maximum support. As already seen (figure 4), the function is
everywhere non-negative in this subspace.

Gij

1.2

0.0 Wl .2 .3 -4 .5 .6 7 .8 .9 1.0
u/m

Figure 6. The functions Fis(u) (upper curve) and Fis(u) sin u (lower curve) as a function
of ujm.
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The dominant subspace is five-dimensional, It contains a three-dimensional
subspace of particular interest, namely the subspace obtained by putting r=1 a,
and p=1a,~t #. It is represented by the point (1, 1) in figure 4. This is the
subspace to which the ground state motion was restricted in early quantum
mechanics, since a Bohr orbit (in ordinary space) was just a circle with radius
r =1 a,, in which the electron was supposed to move with the constant momentum
p=1%a;t. Hence we shall call the subspace in question the classical sub-
space.

The following important statement may now be made, on the basis of the
present section and figures 2 and 3. The Wigner function attains a large,
positive and constant value in the classical subspace. It is also large and positive
in a large region surrounding this subspace. In particular, it is everywhere
non-negative in the dominant subspace. The regions in which the Wigner
function becomes negative are well separated from the classical subspace.

7. THE ANGULAR MOMENTUM DILEMMA

In this section we shall comment on the angular momentum of the ls state,
as calculated by the expression on the right hand side of (10). a(r, p) is, as
mentioned in § 1, the Weyl transform of the operator 4 The Weyl corres-
pondence is discussed in the Appendix and there it is shown that if 4 is a
component of the angular momentum vector operator, say

ia = "91132 - xzﬁl (45 )

then a(r, p) is the same component of the classical angular momentum vector,
that is,

ly=2x,py— %301 (46)

As is well known, the left hand side of (10) is zero when | is the 1s state and
disl, I, or I, Hence the right hand side must also be zero. That this is
actually the case is easily seen by remembering that f(r, p) is independent of the
Euler angles o, B8 and y. This makes all directions of the vector e; in (27)
equivalent. But the direction of e; is also seen to be the direction of the
angular momentum vector and thus each component of this vector does in fact
have a zero mean value.

As regards the length of the angular momentum vector, it is shown in the
Appendix that the classical function

=12+ L2410 (47)
is the Weyl transform of the operator
Ae=f2 4 2402 + 32 (48)

Evaluating the right hand side of (10) with a(r, p) = A* will accordingly produce
the value §#2,

This interesting result allows us to resolve a pedagogical dilemma which
has bothered writers of elementary textbooks [29]. How does one bring the
fact that the angular momentum in a Bohr orbit is % into accordance with the
fact that the angular momentum in the Schrédinger picture is zero ?
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The dilemma is obviously resolved by remarking that the operator that
occurs in the Schrédinger picture, viz.
et lpyly (49)

is different from the operator that corresponds to the classical function A% of
(47). Averaging A% over the classical subspace described in the previous section
does in fact give the value #2, as in the Bohr description.

8. LOCAL DENSITIES

An advantage of the phase space formulation of quantum mechanics is that
it leads to a natural definition of a local density in coordinate space for a given
operator and a given state. Thus (10) suggests that we consider the quantity

afr)= { dp f(r, palr, p) (50)

as being the local density associated with the operator 4 and the state |¢).
Integration over the spatial coordinate gives the expectation value of &

Wlalpy= { de ofr) (51)
When a(r, p) =a(r), a function of r alone, we may use (8) to get
ar) = a(e)(r)*y(r). (52)
As an example, the potential energy operator
pa 2 (53)

4

defines the local potential energy density

z
ep(r) = —— (r)*(r). (54)
For the ground state of the hydrogen atom this becomes, by observing (13),
1 exp (—27). (55)
As an important example of an operator that is not a function of ¢ we con-
sider the kinetic energy operator
2
r2 56
; (56)
The local kinetic energy density becomes
PZ
ewlr)= § dp f(r, p) 5. (57)

It may be evaluated when f(r, p) is known, but as shown by Ziff et al. [30] and
by Cohen [31] it may also be evaluated directly from the coordinate wavefunction
by using (6). The result is

ex(r) = H| V¢ [* - 1V2[¢[?) (58)
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or equivalently
_ ex(r)=3F| V>~ 1* V2 V2 4*). (59)
It is seen that
<x(r) = $(exn(r) + exd(r)), (60)
where
exp(r) =4 V| (61)
and
xo(r) = — 2(*V2 + ¢ V2 y*). (62)
When ¢ is real, egq(r) becomes equal to
exa(t) = —4*V2 4. (63)

The expressions eg,, exp, exc and ex were all discussed by Cohen [31] (who
used the designations K4, Kp, K and K, respectively). He showed that each
expression could be derived from phase space descriptions discussed earlier by
him [32].

For the ground state of the hydrogen atom we obtain the following explicit
expressions

ces()=exclt) =7 (5-1) exp (27, (64
exa(r) =5 xp (~2r), (65)
exlr) = exp (~2r), (66)

These will be discussed further in the following section.

With reference to Cohen’s work [31, 32], we want to make the comment
that, although a whole set of mathematically consistent phase space representa-
tions of quantum mechanics exists, there are compelling reasons why one
should consider the Weyl-Wigner representation used in the present work as
the canonical one. These reasons were discussed at length in a previous paper

[11].

9. A LOCAL VIRIAL THEOREM

Let
Ex= | Ty, (67)
Ep={Y| V], (68)
E={| T+ D¢ (69)

be the expectation values of the kinetic energy, the potential energy and the
total energy, respectively, for a stationary state of the hydrogen atom. As for
any Coulomb system we then have the well-known virial theorem

Ex=—1E; (70)

which expresses a global balance between the kinetic and potential energy. Due

to the obvious relation
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we may also write

Ey=-E. (72)

Bader and his co-workers have shown that for a molecular system it is
possible to perform a spatial partitioning of the charge distribution in such a
manner that the kinetic and potential energies of the resulting fragments obey
the virial theorem (see [33]). For the ground state of the hydrogen atom they
also noted [33] that

exn(r)= —E[$?, (73)

which is a local virial theorem if the right hand side is identified as the local
counterpart of the total energy.

Such an identification is, however, not quite satisfactory, since the natural
definition of this local energy density would be

ep(r) =exp(r) +ep(r) (74)
in accordance with (71) and this quantity is different from the right hand side
of (73). As a consequence exp(r) and ep(t) do not satisfy a local analogue of
(70).

It is, on the other hand, easily seen that if we work with eg(r), defined through
the Weyl-Wigner correspondence, then we obtain a completely satisfactory
local form of the virial theorem

e(r) = — ep(r), (75)
ex(r) = —«(r), (76)
e(r) = exe(r) + ep(r). (77)

It- must be stressed, however, that this remarkable result only holds for the
ground state of a hydrogen-like atom.

In forthcoming publications we plan to study the local balance between the
potential and kinetic energy for other atomic and molecular systems.

10. Di1scussioN AND CONCLUSIONS

The phase space description of a quantum mechanical system is an alter-
native to the description based on wavefunctions. It is from several points of
view a more complicated description. From other points of view it is a richer
description.

The state of a system is described by a Wigner function. In the present
paper we have constructed this function for the ground state of the hydrogen
atom and analysed its properties. The analysis was facilitated by the intro-
duction of concepts like the dynamical plane and the dynamical angle, the classical
subspace and the dominant subspace. The orientation of the dynamical
plane is closely related to the angular momentum vector ; the classical subspace
is that part of phase space to which the ground state motion was confined in
early quantum mechanics.

The Wigner function is found to be independent of the orientation of _the
dyanamical plane. It attains a large, positive and constant value in the classical
subspace and it remains large and positive in an extended region containing that
subspace. Outside this region the Wigner function shows a rich structure
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which includes oscillations of a de Broglie wave-like character for large values
ofrandp. We have illustrated the general variation over phase space by means
of a series of contour maps and a graph which shows that the Wigner function
finds its maximum support in the subspace where r. p=90, the so-called domi-
nant subspace.

A dynamical variable is represented by an operator in a description based on
wavefunctions. In the phase space description it is represented by an ordinary
function of r and p. The connection between the two representations is given
by the so-called Weyl correspondence which we have described in the Appendix.
In §7 we have discussed the Weyl transformation of the angular momentum
and thus resolved a pedagogical dilemma which previously obscured the com-
parison between early quantum mechanics and the Schrédinger description.

In §§8 and 9 we have shown how an integration over the momentum
coordinates leads to a local configuration space description of all dynamical
quantities. We have then studied the local kinetic and potential energies and
shown that the virial theorem is locally satisfied for the ground state of the
hydrogen atom.

In forthcoming papers we shall extend the present study by including
excited states, and atoms and molecules with more than one electron.

We are very grateful to Dr, Sten Rettrup for his kind assistance at an early
stage of this work. We also want to thank Dr. Helge Johansen for letting us
use his density contour programs and Dr. Kurt Nielsen for interesting dis-
cussions,

APPENDIX

The Weyl correspondence

To every operator & in spin-free Hilbert space there corresponds a phase
space function a(r, p), such that (10) is valid. The relation between 4 and
a(r, p) is given by the so-called Weyl correspondence [1], which we prefer to
write in the form [11]

4= (%)a § § drdpa(r, p)II(y, p), (A1)

where II(r, p) is the inversion operator (1). 4 and a(r, p) are said to be mutual
Weyl transforms.

Whenever a(r, p) is a function of r or p alone, then 4 is the same function
of the vector operator ¢ or p. In the general case one obtains the operator 4
from the function a(r, p) by the replacement of ¢ with ¢ and p with §, followed
by a proper symmetrization of products of non-commuting operators. This
symmetrization is such that, if x, and p, are corresponding components of r and
p, then the operator associated with the function »,” p;™ is

1 & (n 4

r=0

1 & (m)\ . 4
- 5 (T)pesepe (a2)

1=0

These expressions were first derived by McCoy [34].
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As an important example let us consider the classical angular momentum
vector

L= x p=(2yp5— X3Py, X3Py — %1P3) X1 Py~ %g1)- (A3)
Direct substitution does not introduce products of non-commuting operators.
The Weyl! transform of / is accordingly

i=#x p= (ﬁzﬁs "»Qaf)z» ’93131 - ‘ﬂlﬁm &11"2 - ﬁth) (A4)

which is just the ordinary quantum mechanical angular momentum vector.
For the square of an angular momentum component, /s say, we obtain

Ig? =% po® + 5% py® — 201 p1 %y P (A5)

Symmetrization according to (A 2) gives the corresponding operator which we
denote 4,2

Aot =22 Po? + 852 o% — W81 5y + Doy )(Say + Bua). (A 6)
Squaring the third component of 1 gives, on the other hand, the operator
o2 =817 o2 + 82 Py — &1y oo — it o A7)
Using the commutation relation
[£2, D) =ik (A8)
twice shows that
2=l (49)
and hence that
PLEYLEN ¥ ) (A 10)
where
=2+ A2+ A2 (A 11)
and
P=l2y b2y b2 (A 12)

Thus, there is a difference of %2 between the Weyl transform of 12 and the
ordinary quantum mechanical operator [2. This difference was apparently
first noticed by Shewell [35] in connection with a general discussion of corres-
pondence and symmetrization rules.
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Absiract:

This is the first part of what will be a two-part review of distribution functions in physics. Here we deal with fundamentals and the second part
will deal with applications. We discuss in detail the properties of the distribution function defined earlier by one of us (EPW) and we derive some
new results. Next, we treat various other distribution functions. Among the latter we emphasize the so-called P distribution, as well as the
generalized P distribution, because of their importance in quantum optics.

1. Introduction

It is well known that the uncertainty principle makes the concept of phase space in quantum
mechanics problematic. Because a particle cannot simultaneously have a well defined position and
momentum, one cannot define a probability that a particle has a position ¢ and a momentum p, i.e. one
cannot define a true phase space probability distribution for a quantum mechanical particle. Nonethe-
less, functions which bear some resemblance to phase space distribution functions, “‘quasiprobability
distribution functions”, have proven to be of great use in the study of quantum mechanical systems.
They are useful not only as calculational tools but can also provide insights into the connections
between classical and quantum mechanics.

The reason for this latter point is that quasiprobability distributions allow one to express quantum
mechanical averages in a form which is very similar to that for classical averages. 