Recent results from the ALICE Experiment at LHC

Catalin Ristea* on behalf of the ALICE Collaboration
*Institute of Space Science, Romania
QCD predicts at high temperature/density the Quark-Gluon Plasma (a deconfined system of quarks and gluons)
 ○ Achieved in the laboratory by colliding heavy ions
Why study QGP?

QGP might have existed in the expanding Universe in the first μs after the Big Bang

Neutron stars: a more likely place for QGP to exist → mass controlled by the equation of state (EoS) of nuclear matter
The goal is to understand the hard partonic and the QGP stages using the measured particles.
Dedicated heavy-ion experiment at the LHC

State of the art particle identification

<table>
<thead>
<tr>
<th>System</th>
<th>pp</th>
<th>p-Pb / Pb-p</th>
<th>Xe-Xe</th>
<th>Pb-Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (TeV)</td>
<td>0.9, 2.76, 7, 8, 5.02, 13</td>
<td>5.02, 8.16</td>
<td>5.44</td>
<td>2.76, 5.02</td>
</tr>
<tr>
<td>(L_{\text{int}})</td>
<td>200(\mu b^{-1}), 100nb(^{-1}), 1.5pb(^{-1}), 2.5pb(^{-1}), 1.3pb(^{-1}), 36pb(^{-1})</td>
<td>18 nb(^{-1}), 25 nb(^{-1})</td>
<td>0.3 (\mu b^{-1})</td>
<td>75 (\mu b^{-1}), 0.8 nb(^{-1})</td>
</tr>
</tbody>
</table>
Impact parameter b
Perpendicular to beam direction
Connects centers of colliding nuclei
Not measured directly \rightarrow estimated by centrality
Impact parameter b
Perpendicular to beam direction
Connects centers of colliding nuclei

Not measured directly → estimated by centrality

Centrality
Determined from *particle multiplicities*
- Most central: 0-5% centrality
- Peripheral: 70-80% centrality
Particle production vs. centrality in Pb-Pb @ 5.02 TeV

ALICE, arxiv:1910.07678

Low and intermediate p_T: collective motion and particle production mechanisms

High p_T: path-length dependence of the quark energy loss

Clear sign of radial flow at low p_T and power-law shape at high p_T as expected from perturbative QCD calculations
Nuclear modification factor - R_{AA}

$R_{AA} = \frac{d^2 N_{AA}/dp_T dy}{\langle N_{bin} \rangle d^2 N_{NN}/dp_T dy}$

- R_{AA} is expected to be different from 1 in case of nuclear effects that can modify the p_T spectrum → initial and final states effects
- final-state effects such as in-medium energy loss (via collisional and radiative processes), the collective expansion and the in-medium hadronization via coalescence
- initial state effects (CNM - cold nuclear matter effects) like nuclear modification of PDFs / CGC, k_T-broadening (Cronin effect)

$R_{AA} < 1$ at high p_T - the nuclear effects suppress the particle production.
$R_{AA} \approx 1$ at high p_T (binary scaling) - no nuclear effects.

System size:
- $pp \rightarrow$ test pQCD properties
- p-$Pb \rightarrow$ CNM effects
- Pb-$Pb \rightarrow$ QGP properties
Measured R_{AA} - highlights

- Similar suppression in Pb-Pb and Xe-Xe at the same multiplicity ~ similar medium density
- New input to constrain path length dependence of energy loss
Measured R_{AA} – highlights

Charged hadrons

Identified hadrons

- Similar suppression in Pb-Pb and Xe-Xe at the same multiplicity ~ similar medium density
- New input to constrain path length dependence of energy loss

ALICE, arxiv:1910.07678

Intermediate p_T: The large difference between the suppression of different species
 → consistent with a mass ordering related to the radial flow

High p_T: No dependence on particle type
 → indicates partonic origin of energy loss
Significant quenching in central Pb-Pb collisions → Pushing down in p_T and to larger jet R

Dead cone effect

$E_{\text{loss}} (g) > E_{\text{loss}} (u,d) > E_{\text{loss}} (c) > E_{\text{loss}} (b)$

$R_{AA}(g) < R_{AA}(c) < R_{AA}(b)$

Improved precision:
First direct view on interplay between melting and regeneration?

Low p_T yields increase towards mid-rapidity: Qualitatively consistent with regeneration/coalescence

Quarkonia

Open charm

Jets

...more in J. Norman’s talk
Anisotropic flow

Anisotropic flow: initial spatial anisotropy → final momentum anisotropy via collective interactions
- v_n quantify the event anisotropy

Anisotropic flow is sensitive to the system evolution
- Constrains initial conditions, EOS, transport properties (e.g. shear viscosity over entropy density ratio (η/s) and bulk viscosity over entropy density ratio (ζ/s)), particle production mechanisms

Pressure gradients (larger in the x directions) push bulk "out" → "flow"
More, faster particles seen in the x-direction

$$E \frac{d^3N}{d^3p} = \frac{1}{2\pi} \int d\phi d\rho d\rho_T dy \left(1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_n)) \right)$$
Elliptic flow across the systems

- Pronounced v_2 in peripheral Pb-Pb and at similar multiplicities in p-Pb/pp
- v_2 extends to small systems \rightarrow it’s enough to have few scatterings in order to build flow
- Multi-particle cumulants \rightarrow non-flow contributions are suppressed
System size dependence Pb-Pb vs. Xe-Xe

Inclusive charged hadrons
Similar v_2 for both systems, but
Xe nucleus deformation
→ larger v_2 in Xe-Xe for most central collisions

Constrain initial conditions and medium properties
System size dependence

Constrain initial geometry and transport coefficients (e.g. η/s)
- 0-5%: $v_2^{\text{Xe}} > v_2^{\text{Pb}} \rightarrow \text{Xe}$ deformation

ALICE Preliminary
0$-$5$\%$, $|y| < 0.5$

$\text{Xe} - \text{Xe}$: $\sqrt{s_{\text{NN}}} = 5.44$ TeV
$\text{Pb} - \text{Pb}$: $\sqrt{s_{\text{NN}}} = 5.02$ TeV
ALICE, JHEP 1807 (2018) 103
System size dependence

Constrain initial geometry and transport coefficients (e.g., η/s)

- 0-5%: $v_2^{Xe} > v_2^{Pb} \rightarrow Xe$ deformation
- 20-30%: $v_2^{Pb} > v_2^{Xe}$ for $p_T > 2$ GeV/c
Heavy-flavor flow

c-quarks → produced isotropically in the early stages and pick up v_2 by interacting with QGP

- D meson v_2 similar to light meson v_2 → strong collectivity/thermalisation → strong c-quark coupling to the medium
Heavy-flavor flow

c-quarks \rightarrow produced isotropically in the early stages and pick up v_2 by interacting with QGP

- D meson v_2 similar to light meson v_2 \rightarrow strong collectivity/thermalisation \rightarrow strong c-quark coupling to the medium
- Large J/ψ v_2 up to $p_T \sim 8$ GeV/c \rightarrow charm recombination and thermalisation
Heavy-flavor flow

- D meson v_2 similar to light meson $v_2 \rightarrow$ strong collectivity/thermalisation \rightarrow strong c-quark coupling to the medium
- Large J/ψ v_2 up to $p_T \sim 8$ GeV/c \rightarrow charm recombination and thermalisation
- v_2 of $\Upsilon(1S)$ consistent with 0 (small values from theory)
Charm quark energy loss

Combine v_2 and R_{AA} in order to constrain models
Event-shape-engineering

- Select events with similar centralities and different shapes based on the event-by-event flow/eccentricity fluctuations

Flow vector

\[Q_{n,x} = \sum_i \cos(n \varphi_i) \]

\[Q_{n,y} = \sum_i \sin(n \varphi_i) \]

\[q_n \text{ distribution} \]

\[Q_n = Q_{n,x}, iQ_{n,y} \]

\[q_n = |Q_n|/\sqrt{M} \]
Charged hadrons ESE

- \(q_2 \) selects events up to 30% larger or smaller \(v_2 \) than the average
- \(p_T > 3 \text{ GeV/c} \): ratios almost flat \(\rightarrow \) same source of flow fluctuations
- \(p_T < 3 \text{ GeV/c} \): weak \(p_T \) dependence \(\rightarrow \) different ellipticity for various \(q_2 \) classes
Charged hadrons ESE

- q_2 selects events up to 30% larger or smaller v_2 than the average
- $p_T > 3$ GeV/c: ratios almost flat → same source of flow fluctuations
- $p_T < 3$ GeV/c: weak p_T dependence → different ellipticity for various q_2 classes
Identified particle ESE

- $p_T > 3 \text{ GeV}/c$: ratios almost flat \rightarrow same source of flow fluctuations
- $p_T < 3 \text{ GeV}/c$: weak p_T dependence \rightarrow different ellipticity for q_2 classes
- Same values for inclusive and PID
 - No dependence on particle species
Charm ESE

D mesons are sensitive to the light-hadron bulk collectivity and event-by-event fluctuations in the initial stage.

Ratio (ESE/unbiased) of J/ψ v_2 consistent with those of single muons within uncertainties.

\rightarrow J/ψ v_2 compatible with the expected variations of the eccentricity.
Chiral magnetic effect

- Domains with different topological charge + strong magnetic field → charge separation along the magnetic field (Chiral Magnetic Effect)

- 3-particle correlator sensitive to CME → splitting of same and opposite sign correlator
 → Main question: background?
Chiral magnetic effect

- First measurement in Xe-Xe collisions
- Expected weaker magnetic field
 → Smaller splitting

→ Splitting in Xe-Xe and Pb-Pb similar
→ Indicates large background contribution (coupled to v_2, local charge conservation)
Charm quarks are produced early in the collision

→ powerful probe to **quantify** the initial magnetic field **directly**

Positive slope \(d\Delta v_1/d\eta \) for \(D^0 \) and \(\bar{D}^0 \)

- Quantify the effect of charge separation

→ Larger than that of charged hadrons by about three orders of magnitude
Magnetic field and angular momentum

1) large L + spin-orbit coupling \rightarrow (global) polarization (probing early/late stages)

2) B along L \rightarrow opposite direction effect for particles/antiparticles \rightarrow sensitive to magnetic field

- Λ results confirm earlier observed trend of the global polarization \rightarrow decrease with increasing collision energy
Magnetic field and angular momentum

1) Large L + spin-orbit coupling \rightarrow (global) polarization (probing early/late stages)

2) B along L \rightarrow opposite direction effect for particles/antiparticles \rightarrow sensitive to magnetic field

- Λ results confirm the observed earlier trend of the global polarization \rightarrow decrease with increasing collision energy
- Larger effect for K^*0 and Φ than observed in Λ polarization

ALICE, arxiv:1910.14408

At low momenta: deviation from 1/3 (maximum in semi-central collisions)
Hadron interactions

The LHC provides a unique and precise testing of the hadron-hadron interaction at distances lower than 1 fm:

- Search for bound states
- Strong constraints to low-energy QCD effective theories
- More precise equation of state (NS)

\[
C(k^*) = \int S(r) |\Psi(k^*, r)|^2 \, d^3r = \mathcal{N} \cdot \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}
\]

Source function \(S(\mathbf{r}) \)

Emission source

Two-particle wave function

Modelling/fitting performed using CATS

Hadron interactions

- The LHC provides a unique and precise testing of the hadron-hadron interaction at distances lower than 1 fm
 - Search for bound states
 - Strong constraints to low-energy QCD effective theories
 - More precise equation of state (NS)
- Large set of particle pairs studied in ALICE in small collisions systems, pp and p-Pb collisions

ALICE, PRL 123 (2019) 112002, p-Ξ^-
ALICE, arXiv:1905.13470, p-K^-
ALICE, arXiv:1910.14407, p-Σ^0
Light nuclei production

Production mechanism of A=3 nuclei
→ Thermal, coalescence, ...?

Yields and ratios
→ First (anti-)triton spectra in Pb-Pb collisions
→ 3He/p increases by one order of magnitude

Smooth evolution with multiplicity
Two regimes:
- Flat trend at low multiplicity: the system size is smaller than the nucleus size
- Decreasing trend at high multiplicity: the system size is larger than the nucleus size
Hyper-matter investigation

Pb-Pb 2015 dataset published in September
2018 Pb-Pb dataset + Machine Learning methods (in red)

- Single measurement same relative error as world average
- Precision is crucial to test of different models with different hypertriton structure and final state interaction

Hyper-triton lifetime close to free \(\Lambda \), in agreement with expectations
Photonuclear reactions

Probe nPDFs with quasi-real photon in ultra-peripheral Pb-Pb collisions → in agreement with nuclear gluon shadowing

ALICE, arxiv:1904.06272
ALICE Upgrade Program

Better vertexing

Faster TPC

TPC

ITS2
ALICE Upgrade Program

- Better vertexing
- Faster TPC
- ITS2
- ITS3

 Miami-2019, Fort Lauderdale, Dec, 14
Future “all-silicon” heavy-ion detector at the LHC (beyond 2030)

Physics potential

- **Heavy flavours, quarkonia**
 - Multi-heavy flavoured hadrons (Ξ_{cc}, Ω_{cc}, Ω_{ccc})
 - χ_c states

- **Thermal radiation**
 - Dileptons and photons

- **Soft hadronic and electromagnetic radiation**
 - Hadrons down to tens of MeV/c
 - Photons down to ~50 MeV/c

- **BSM**
 - Dark photons

EoI document (arXiv:1902.01211) signed by ~400 physicists
→ submitted to European Strategy for Particle Physics Preparatory group
Conclusions

Collective behaviour across systems in high multiplicity pp, p-Pb and A-A collisions

Precision measurements
- To understand system evolution and QGP properties (initial effects, parton energy loss and medium response, spin interactions and magnetic field, CME, flow)
- Hadron Physics (hyper-triton, hadron-hadron interactions)
Allowing better understanding and validation of QCD

ALICE upgrade: order(s) of magnitude more events, with improved detectors
Backup
Blast-Wave fits to particle spectra

Simultaneous fit to the pi, K, p spectra:

\[
\frac{dN}{p_{\perp}dp_{\perp}} \propto \int_0^R rdr m_{\perp} I_0 \left(\frac{p_{\perp} \sinh \rho}{T_{\text{kin}}} \right) K_1 \left(\frac{m_{\perp} \cosh \rho}{T_{\text{kin}}} \right)
\]

- \(T_{\text{kin}}\) – kinetic freeze-out temperature
- \(\beta_T\) – transverse radial flow velocity

- \(\beta_T\) increases with centrality in AA collisions
 - Central Pb-Pb 5.02 TeV → largest \(\beta_T\)
- \(T_{\text{kin}}\) is lower in central collisions → longer system lifetime to develop collective effects
- in pp and p-Pb, similar evolution of the BW fit parameters towards high multiplicity
- higher \(T_{\text{kin}}\) in pp and p-Pb with respect to heavy-ion collisions
Strangeness production

- The integrated particle yields exhibit a continuous evolution with the charged particle multiplicity independent of the collision system.
- Abundances of strange hadrons are invariant with the collision energy at similar multiplicities.
- At large multiplicities small systems reach the values observed in heavy-ions.
- Chemical composition seems to be driven by $\langle dN_{\text{ch}}/d\eta \rangle$ and not by the collision system.