Some Recent Results from $BABAR$

Jack Ritchie
University of Texas at Austin
(representing the $BABAR$ collaboration)

Progress on Rare FCNC B decays
Outline

I. The *BABAR* Experiment

II. Rare FCNC Decays
 i. $b \rightarrow s\gamma$
 ii. $b \rightarrow d\gamma$ (including $B^0 \rightarrow \gamma\gamma$)
 iii. $b \rightarrow sll\bar{l}$ (where $l = e, \mu, \tau$ or ν)

III. Conclusion
$\bar{B}B$ production at PEP-II

$\Upsilon(4S)$ decays $\approx 100\%$ to $\bar{B}B$

$\bar{B}B$ production at PEP-II

Continuum ($u\bar{u}, d\bar{d}, s\bar{s}, c\bar{c}, \tau^+\tau^-$) events are backgrounds to most B decay measurements.

Rich program including CPV, CKM parameters, rare B decays, charm, τ decays, bottomonium,…

≥ 450 publications so far
BABAR at SLAC

- 1.5 T solenoid
- Silicon vertex tracker
 - 5 layer, double-sided
- Drift chamber
 - Tracking + dE/dx
 - 40 stereo layers
- DIRC particle ID
 - Quartz bars, 11000 PMTs
- CsI(Tl) calorimeter
 - 6580 crystals
- Instrumented Flux Return
 - Iron + resistive plate chambers and limited streamer tubes

CM boost $\beta\gamma \approx 0.56$
9 GeV e^-, 3.1 GeV e^+
$b \rightarrow s\gamma$ in the Standard Model

- First penguin – 1993 CLEO observation of $B \rightarrow K^*\gamma$
- Heavy-quark hadron duality $\Rightarrow B(B \rightarrow X_s\gamma) \cong B(b \rightarrow s\gamma)$
- Theoretically clean prediction in the Standard Model
 - Next-to-next-leading order (NNLO) calculation ($E_{\gamma} > 1.6$ GeV)
 \[
 B(B \rightarrow X_s\gamma) = (3.15 \pm 0.23) \times 10^{-4}
 \]
 Misiak et al., PRL 98, 022002(2007)
 - Small (7%) SM theory uncertainty \Rightarrow constraint on New Physics
- E_{γ} spectrum reflects b quark’s mass, Fermi motion and gluon brem
 - Input to shape function parameters for $|V_{ub}|$ from $b \rightarrow ul^-\nu$ endpoint and used in extraction of $|V_{cb}|$ from $b \rightarrow cl^-\nu$

Jack Ritchie
U.Texas-Austin

Miami 2010 5
New Physics in $b \rightarrow s\gamma$

- Sensitive to new heavy particles in the loops
 - charged Higgs, superpartners, etc

- Leading-order and next-to-leading order calculations for many models

- Experiment vs theory BF \Rightarrow strong constraints on New Physics

$M_{H^\pm} > 295$ GeV

2-Higgs doublet model (type II); (as in MSSM)

Haisch, arXiV:0805.2141
Experimental Issues for $B \rightarrow X_s \gamma$

- **Two experimental techniques**
- **Fully Inclusive**
 - Only look at the γ from the signal B decay
 - Continuum rejection via event shape and either lepton tag (rejection $\sim 10^{-5}$ for 2.5% signal eff) or reconstructing the other B
- **"Semi-inclusive"** (sum of exclusive modes)
 - Reconstruct many final states (38 in BABAR)
 - Dominant systematic from the missing fraction ($\approx 45\%$)
- **Suppress B backgnd with E_γ min cut**
 - Compromise between experimental vs theoretical uncertainties

\[
E_\gamma^* \approx \frac{m_b^2 - m_s^2}{2m_b} \approx \frac{m_b}{2}
\]
Experimental Issues for $B \to X_s \gamma$

- **Two experimental techniques**

- **Fully Inclusive**
 - Only look at the γ from the signal B decay
 - Continuum rejection via event shape and either lepton tag (rejection $\sim 10^{-5}$ for 2.5% signal eff) or reconstructing the other B

- **“Semi-inclusive” (sum of exclusive modes)**
 - Reconstruct many final states (38 in BABAR)
 - Dominant systematic from the missing fraction

- **Suppress B background with E_γ min cut**
 - Compromise between experimental vs theoretical uncertainties

Jack Ritchie
U.Texas-Austin
Experimental Status for $B \rightarrow X_s \gamma$

Comparison of measurements extrapolated to $E_\gamma > 1.6$ GeV by the Heavy Flavor Averaging Group.

Updates are in progress for these BaBar measurements.
Direct CP Violation (A_{CP}) in $B \rightarrow X_s\gamma$

$$A_{CP} = \frac{\Gamma(B \rightarrow X_{s+d}\gamma) - \Gamma(\bar{B} \rightarrow X_{\bar{s}+\bar{d}\gamma})}{\Gamma(B \rightarrow X_{s+d}\gamma) + \Gamma(\bar{B} \rightarrow X_{\bar{s}+\bar{d}\gamma})} \approx 0$$

A strong SM prediction, so a good NP test.

0.056 \pm 0.060 \pm 0.018 optimized region
2.1 < E_γ < 2.8 GeV

Jack Ritchie
U.Texas-Austin

Miami 2010
• Suppressed w.r.t. $b \rightarrow s \gamma$ by $|V_{td}/V_{ts}|^2 \approx 0.04$

• Sensitivity to New Physics via loops
 – CKM suppression may not hold

• Complementary to B_s and B_d mixing for determining $|V_{td}/V_{ts}|$
 – Less precise, but
 – Possible different sensitivity to New Physics in box (mixing) vs radiative penguin diagrams.

• $|V_{td}/V_{ts}|$ determination can be based on exclusive ratio $\frac{B(B \rightarrow \rho \gamma)}{B(B \rightarrow K^{*}\gamma)}$
 – Depends on ratio of form factors
 – Ratio of inclusive rates is theoretically cleaner
 – BABAR has recently reported a semi-inclusive measurement
$B \rightarrow X_{d/s} \gamma$

Seven modes with one $\pi \leftrightarrow K$

$B \rightarrow X_{d}\gamma$

<table>
<thead>
<tr>
<th>Mode</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \rightarrow \pi^+\pi^-\pi^+$</td>
<td>$B^0 \rightarrow K^+\pi^-\pi^+$</td>
</tr>
<tr>
<td>$B^+ \rightarrow \pi^+\pi^0\pi^+$</td>
<td>$B^+ \rightarrow K^+\pi^+\pi^-\pi^+$</td>
</tr>
<tr>
<td>$B^+ \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^+$</td>
<td>$B^0 \rightarrow K^+\pi^0\pi^-\pi^+$</td>
</tr>
<tr>
<td>$B^0 \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^+$</td>
<td>$B^0 \rightarrow K^+\pi^0\pi^-\pi^+$</td>
</tr>
<tr>
<td>$B^+ \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^+$</td>
<td>$B^+ \rightarrow K^+\pi^+\pi^-\pi^+$</td>
</tr>
</tbody>
</table>

Continuum rejection via event shape (neural net) – 99% rejection with good signal eff (≈25%)
Extract signals via 2-d maximum likelihood fits
Correct for missing modes
 – Simple in low-mass bin; mostly missing K^0 modes
 – Fragmentation model for high-mass (dominant systematic error)

Hadronic mass bins:
0.5-1.0 GeV (all ρ,ω, K^*)
1.0-2.0 GeV (nonresonant)

$M_{ES} = \sqrt{E_{\text{beam}}^2 - p_B^2}$

$\Delta E = E_B^* - E_{\text{beam}}^*$

Signal peaks at
$M_{ES} = M_B$
$\Delta E = 0$

Seven modes with one $\pi \leftrightarrow K$

$B \rightarrow X_{d/s} \gamma$
$B \to X_{d/s}\gamma$ Results

<table>
<thead>
<tr>
<th>$0.5 < M_X < 1.0$ GeV</th>
<th>$1.0 < M_X < 2.0$ GeV</th>
<th>$0.5 < M_X < 2.0$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(B \to X_d\gamma) \times 10^6$</td>
<td>$1.3 \pm 0.3 \pm 0.1$</td>
<td>$7.9 \pm 2.0 \pm 2.2$</td>
</tr>
<tr>
<td>$B(B \to X_s\gamma) \times 10^6$</td>
<td>$38 \pm 2 \pm 2$</td>
<td>$192 \pm 8 \pm 29$</td>
</tr>
<tr>
<td>$\frac{B(B \to X_d\gamma)}{B(B \to X_s\gamma)}$</td>
<td>$0.033 \pm 0.009 \pm 0.003$</td>
<td>$0.040 \pm 0.009 \pm 0.010$</td>
</tr>
</tbody>
</table>

- Correct to full M_X range using Kagan-Neubert spectrum (ratio insensitive)

\[
|V_{td}/V_{ts}| = 0.199 \pm 0.022({\text{stat}}) \pm 0.024({\text{syst}}) \pm 0.002({\text{th}})
\]
Search for $B^0 \rightarrow \gamma\gamma$

- Leading order Standard Model calculation

$$B(B^0 \rightarrow \gamma\gamma) = (3.1^{+6.4}_{-1.6}) \times 10^{-8}$$

- Possible enhancement from New Physics in loop
- Never observed, best prior limit from Belle

$$B(B^0 \rightarrow \gamma\gamma) < 6.2 \times 10^{-7} \ (90\% \ CL)$$

PRD 73,051107(2006)

- New $BABAR$ search based on 430 fb$^{-1}$ (full dataset)
- Simple signature, but significant backgrounds from π^0 and η decays in continuum events
$B^0 \rightarrow \gamma\gamma$ Background Rejection

Most rejection from likelihood ratios (π^0, η) and neural net

Net rejection $\sim 10^{-3}$ for cuts with 27% signal efficiency
$B^0 \rightarrow \gamma\gamma$ Results

BABAR Preliminary

- Events / (0.003 GeV/c^2)
- $-0.30 \leq \Delta E \leq 0.13$ GeV

$N_{\text{signal}} = 21^{+13}_{-12}$ events (1.9σ)

$B(B^0 \rightarrow \gamma\gamma) = (1.7 \pm 1.1 \pm 0.2) \times 10^{-7}$

Set limit by integrating likelihood function to 90%

- Smear by 12% systematic error

90% CL upper limit

$B(B^0 \rightarrow \gamma\gamma) < 3.3 \times 10^{-7}$
$b \to s \, l^+l^-$

- More complex than $b \to s \, \gamma$
 - W-box and Z-penguin amplitudes important
 - $c\bar{c}$ resonances in dilepton spectrum (removed by cuts on M_{ll})

- More observables
 - dilepton mass spectrum ($q^2 = M_{ll}^2$)
 - forward–backward asymmetry (A_{FB})
 - New Physics may induce large effects in these observables

- Standard Model estimates made at NNLO
 - Reliable for inclusive $b \to s \, l^+l^-$
 - Form factor uncertainties affect exclusive processes
$b \rightarrow s \ l^+l^-$

- More complex than $b \rightarrow s \ \gamma$
 - W-box and Z-penguin amplitudes important
 - cG resonances in dilepton spectrum (removed by cuts on M_{ll})

- More observables
 - dilepton mass spectrum ($q^2 = M_{ll}^2$)
 - forward–backward asymmetry (A_{FB})
 - New Physics may induce large effects in these observables

- Standard Model estimates made at NNLO
 - Reliable for inclusive $b \rightarrow s \ l^+l^-$
 - Form factor uncertainties affect exclusive processes
$b \rightarrow s \ l^+ l^-$ Experimental Issues

• Fully inclusive measurements not possible
 – Semi-inclusive analysis via sum of exclusive states ($K l^+ l^- + n \pi$)
 – Exclusive $B \rightarrow K l^+ l^-$ and $B \rightarrow K^* l^+ l^-$ easier, but involve form factors

• Interference from $B \rightarrow K^(*) J/\psi$ and $B \rightarrow K^(*) \psi(2S)$
 – Remove with cuts on $l^+ l^-$ mass
 – Provide important control samples (same topology, known BFs)

• Main backgrounds from B and D semileptonic decays
 – Suppress using event shape, vertex info, missing energy

• Bkg from $B \rightarrow D \pi (D \rightarrow K^(*) \pi) + \pi \rightarrow \mu$ mis-ID
 – Veto $K^(*) \pi$ mass close to D

• Extract signal with maximum likelihood fits

Jack Ritchie
U.Texas-Austin
Miami 2010
$b \to s \ell^+\ell^-$ Branching Fraction Summary

- **Good agreement between experiment and Standard Model theory**
 - Experimental errors smaller than theory errors for exclusive modes
 - With current statistics, all BF vs q^2 measurements consistent with SM
- **Semi-inclusive measurements not updated to full datasets (yet)**

![Graph showing branching fractions for various decay modes](image)
A_{FB} in $b \rightarrow s \ell^+\ell^-$

Lepton forward–backward asymmetry (A_{FB})

\[
A_{FB}(q^2) = \frac{1}{dB} \int d \cos \theta_l \frac{d^2B}{dq^2 d \cos \theta_l} \text{sgn}(\cos \theta_l)
\]

Sensitive to interference effects due to New Physics that might not affect BFs - e.g., relative signs of Wilson coefficients

$C_7 = -C_7(SM)$

$C_9 C_{10} = -C_9 C_{10}(SM)$

$C_7 = -C_7(SM)$

$C_9 C_{10} = -C_9 C_{10}(SM)$

Lepton pair CM
A_{FB} in $B \rightarrow K^* \ell^+ \ell^-$

Lepton forward–backward asymmetry (A_{FB})

$A_{FB}(q^2) = \frac{1}{\frac{d^2B}{dq^2}} \int d \cos \theta_\ell \frac{d^2B}{dq^2 d \cos \theta_\ell} \text{sgn}(\cos \theta_\ell)$

A_{FB} determined from ML fit
- Along with K^* polarization (F_L)
- Fit validation with $B \rightarrow K^* J/\psi$ and $B \rightarrow K^* \psi(2S)$

$\frac{1}{\Gamma} \frac{d \Gamma}{d \cos \theta_\ell} = \frac{3}{4} F_L (1 - \cos^2 \theta_\ell)$

$+ \frac{3}{8} (1 - F_L)(1 + \cos^2 \theta_\ell) + A_{FB} \cos \theta_\ell$

Lepton pair CM

$0.1 < q^2 < 6.25 \text{ GeV}^2$

$q^2 > 10.24 \text{ GeV}^2$

BABAR 349 fb$^{-1}$

Jack Ritchie
U.Texas-Austin

Miami 2010
A_{FB} Measurements in $B \rightarrow K^* l^+ l^-$

- Experiments are consistent
- Consistent with SM
 - Tend to be high at low q^2
- $BABAR$ result will be updated to full data + other improvements
- Clearly need higher statistics
Search for $B \rightarrow K \nu \bar{\nu}$

- Standard Model branching fraction $\approx 4 \times 10^{-6}$
- Sensitive to multiple New Physics scenarios
 - Significant enhancements possible (MSSM, unparticles, extra dimn); Yamada, PRD 77,014025; Aliev JHEP 07:072; Colangeo PRD 73, 115006.
- New search using full BaBar dataset
- Reconstruct tag B in $B \rightarrow D^{(*)}\nu$
- Decision trees for bkngd rejection
 - Missing energy, event info kinematics, Tag B info
 - 26 (38) inputs for $K^+(K^0)$ mode
Search for $B \rightarrow K \nu \bar{\nu}$

<table>
<thead>
<tr>
<th>Mode</th>
<th>N_{bkgd}</th>
<th>N_{obs}</th>
<th>N_{excess}</th>
<th>N_{sig} at SM BF</th>
</tr>
</thead>
<tbody>
<tr>
<td>K^+</td>
<td>$17.6 \pm 2.6 \pm 0.9$</td>
<td>$19.4^{+4.4}_{-4.4}$</td>
<td>$1.8^{+6.2}_{-5.1}$</td>
<td>2.9 ± 0.4</td>
</tr>
<tr>
<td>K^0</td>
<td>$3.9 \pm 1.3 \pm 0.4$</td>
<td>$6.1^{+4.0}_{-2.2}$</td>
<td>$2.2^{+4.1}_{-2.8}$</td>
<td>0.5 ± 0.1</td>
</tr>
</tbody>
</table>

BABAR preliminary

$B(B^+ \rightarrow K^+ \nu \bar{\nu}) < 1.3 \times 10^{-5}$

$B(B^0 \rightarrow K^0 \nu \bar{\nu}) < 5.6 \times 10^{-5}$
First Search for $B \rightarrow K \tau^+ \tau^-$

Branching Fraction

<table>
<thead>
<tr>
<th>Decay</th>
<th>Branching Fraction $(0.6 \leq q^2/m_b \leq 1.0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \rightarrow X_s e^+ e^-$</td>
<td>5.8×10^{-7}</td>
</tr>
<tr>
<td>$B \rightarrow X_s \mu^+ \mu^-$</td>
<td>5.8×10^{-7}</td>
</tr>
<tr>
<td>$B \rightarrow X_s \tau^+ \tau^-$</td>
<td>2.5×10^{-7}</td>
</tr>
</tbody>
</table>

$X_s = K \approx 50\%$

- **SM rate inaccessible, but**
 - NP may enhance, $(m_\tau/m_\mu)^2=280$
 - Important to identify experimental issues/prospects for future expts

Hiller, PRD 70, 034018(2004)

BABAR Preliminary

- **Background est**
- **Observe 47 events with 65 ± 7 est bkg**

90% CL

$$B(B^+ \rightarrow K^+ \tau^+ \tau^-) < 3.3 \times 10^{-3}$$

Jack Ritchie
Miami 2010

U.Texas-Austin
Summary/Conclusions

• There has been lots of progress, and continues to be lots of activity, in the study of rare FCNC B decays
 – The flow of results from BABAR (and Belle) will continue as final analyses are completed over the next year or two.

• These processes are important
 – Reliable Standard Model calculations possible
 – Sensitive to New Physics through loops

• No current result is inconsistent with the SM

• Several key measurements are statistically limited, so a complete study of these processes will require much larger data samples.
Backup/Extra Slides
Isospin Asymmetry

\[A_I = \frac{B(B^0 \rightarrow K^{(*)0} l^+ l^-) - \frac{\tau_0}{\tau_+} B(B^\pm \rightarrow K^{(*)\pm} l^+ l^-)}{B(B^0 \rightarrow K^{(*)0} l^+ l^-) + \frac{\tau_0}{\tau_+} B(B^\pm \rightarrow K^{(*)\pm} l^+ l^-)} \]

- Expected near 0 for all \(q^2 \)
- Measurements
 - Consistent with 0 at high \(q^2 \)
 - Favor less than 0 at low \(q^2 \)
 - Belle 2.2\(\sigma \) below 0
 - \textit{BABAR} 3.9\(\sigma \) below 0
Direct CP Asymmetry

\[A_l = \frac{B(\overline{B} \to \overline{K}^{(*)} l^+ l^-) - B(B \to K^{(*)} l^+ l^-)}{B(\overline{B} \to \overline{K}^{(*)} l^+ l^-) + B(B \to K^{(*)} l^+ l^-)} \]

Test for direct CP violation; less than 1% in Standard Model
Lepton Flavor Asymmetry

\[R_{K^{(*)}} = \frac{B(B \rightarrow K^{(*)} \mu^+ \mu^-)}{B(B \rightarrow K^{(*)} e^+ e^-)} \]

\(\cong 1 \) in SM (for \(K^* \) if \(q^2 > 0.1 \text{ GeV}^2 \))

Enhanced in models with two-Higgs doublets, including SUSY with a neutral Higgs at large \(\tan \beta \)