Measuring Neutrino Interactions at MINERυA (Main Injector Experiment ν-A)

Joel Mousseau on behalf of the MINERυA Collaboration
University of Florida
Miami 2010
12/18/2010
Outline

- Motivation and physics goals of MINERνA.
- Detector and beamline description.
- Reconstruction techniques developed by MINERνA.
- Event displays and kinematic distributions.
Testing Neutrino Interaction physics

- Older Neutrino scattering experiments suffered from several deficiencies.

- Often bubble chamber experiments suffered from low statistics (~10 – 100 events).

- High-A material used as targets. Introduces poorly understood nuclear effects.

- Beam fluxes not well measured.

No MiniBooNE or SciBooNE data, however...

G. P. Zeller
MiniBooNE and SciBooNE data not consistent with NOMAD!

MINERνA is sensitive to this gap in energy.
Improving Oscillation Measurements

Oscillation experiments still report results with larger errors / low significances.

Part of this is statistics: neutrino interactions are rare.

Uncertainties on the underlying cross-sections are typically the dominant systematic uncertainty.

MINERνA is in a position to reduce these uncertainties by measuring these cross-sections with higher precision.

| Uncertainty | $|\Delta m^2|$ (10$^{-3}$ eV2) | $\sin^2(2\theta)$ |
|------------------------------------|---------------------------------|--------------------|
| (a) Absolute hadronic E scale (\pm10.3%) | 0.052 | 0.004 |
| (b) Relative hadronic E scale (\pm3.3%) | 0.027 | 0.006 |
| (c) Normalization (\pm4%) | 0.081 | 0.001 |
| (d) NC contamination (\pm50%) | 0.021 | 0.016 |
| (e) μ momentum (range 2%, curvature 3%) | 0.032 | 0.003 |
| (f) $\sigma_{\tau}(E_\tau < 10$ GeV) (\pm12%) | 0.006 | 0.004 |
| (g) Beam flux | 0.010 | 0.000 |
| Total systematic uncertainty | 0.108 | 0.018 |
| Expected statistical uncertainty | 0.19 | 0.09 |

Table of Systematic errors from MINOS. Items a, c and d. all contain contributions from event cross-section uncertainty. PRL 101 (13): 130502
Investigating Nuclear Effects

- Neutrinos provide a unique probe of nuclear structure because they only interact via weak.
- Nuclear shadowing predicted to be different for neutrinos vs. charged leptons.
- Nuclear effects are A dependent. MINERνA will measure the A dependence using multiple nuclear targets.

EMC effect well known for charged lepton DIS. Well known effect for neutrino DIS is ???
MINERπA to the rescue

- MINERπA is designed to measure neutrino-nuclear cross sections on a variety of materials (C, Fe, Pb, He, H₂O).
- MINERπA rests in the high intensity NuMI neutrino beam at Fermilab in Batavia, IL.
- The high intensity beam + high resolution detector = high precision measurements.
- Over 80 scientists from 7 different countries.
Time Line of MINERνA

- 11/2009: Accumulated \(\sim 0.8 \times 10^{20}\) POT of low energy (LE) anti-neutrino beam with 55% of detector commissioned.
- Spring 2011-3/2012: Accumulate at least \(4 \times 10^{20}\) POT, plus \(0.9 \times 10^{20}\) POT in special runs to determine neutrino flux.
- 3/2012: Fermilab accelerator shutdown, switch to Medium Energy (~6 GeV average). Accumulate more than \(12 \times 10^{20}\) POT with NOνA.
NuMI (Neutrinos at the Main Injector) beamline

NuMI produces neutrons by smashing 120 GeV protons from the FNAL Main Injector on to a graphite target, and allowing the resultant mesons to decay in the decay pipe. Magnetic horns let us sign select positive/negative mesons, which translates to muon/antimuon neutrinos in the beamline. Muon monitors count number of muons at three different locations inside the rock.
NuMI Beamline:

- The Graphite NuMI target is mounted on rails to allow different neutrino energy spectra.
- Target pulled out: only focus very low angle, high energy pions = higher neutrino energy.
- Use different horn configurations and muon monitor data to tune flux MC.
- Goal: understand flux normalization to ~10%.
Structure of MINERνA

MINERνA consists of 120 hexagonal shaped “modules”, each stacked one in front of the other in the direction of the neutrino beam. Modules come in one of four types: nuclear target, tracker, EM calorimeter, and hadronic calorimeter.

Other detector elements: Veto Wall and cryogenic target.
MINERνA employs nuclear targets of Fe, Pb, and C. One of the goals of MINERνA is to study nuclear effects as a function of A. C: Common material in scintillators. Fe: Common material in calorimeters. Pb: Stable, high A.

Key:
- Gray = Pb
- Red = Fe
- Black = C

<table>
<thead>
<tr>
<th>Target</th>
<th>Mass in tons</th>
<th>CC Events (Million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scintillator</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>He</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>C (graphite)</td>
<td>0.15</td>
<td>0.4</td>
</tr>
<tr>
<td>Fe</td>
<td>0.7</td>
<td>2.0</td>
</tr>
<tr>
<td>Pb</td>
<td>0.85</td>
<td>2.5</td>
</tr>
<tr>
<td>Water</td>
<td>0.3</td>
<td>0.9</td>
</tr>
</tbody>
</table>

4×10^{20} POT LE beam + 12×10^{20} POT ME beam
Structure of a Module

Outer Detector Frame: Fe, used for hadron calorimetry.

Lead collar: surrounds edge of scintillator strips. Used for EM calorimetry.

Scintillator bars in OD: Used to detect particles escaping out the side.

Inner Detector: Plastic scintillator strips create light from moving charged particles.

Steel supports used to hang modules on rail.
Scintillator strips:

- Doped Polystyrene with WLS fiber running through the center.
- Triangular design of scintillator strips allows greater position resolution via charge sharing (transverse resolution about 3 mm).
- 127 strips makes up one plane.
- Strips orientation allows for a 3D view (see diagram).
MINOS: MINERυA's Muon Spectrometer

- MINERυA cannot range out all high energy μ^- (too little mass).
- Muons are the most important particles in reconstructing ν_μ events, we need to know their energy and momentum.
- Solution: use MINOS, which is directly downstream of MINERυA. MINOS is equipped with a 1.1 - 1.5 T magnet.
- MINOS provides extra mass, so the muon energy can be measured by range.
- If the muon does not range out in MINOS, resort to measuring momentum by curvature.
- MINOS magnetic field also lets us determine the sign of the muon, and if the event was neutrino or anti-neutrino.
Veto Wall

Veto wall is designed to tag neutrino rock events which produce muons.

Muons are vital to reconstructing our events; we need to make sure they originate in the target area and not the rock which surrounds the detector.

Most important for upstream target and He analysis.

Composed of two walls of 6 10' x 2.5' panels of scintillator + steel shielding.

Each panel is read out by two one-channel PMTs. One on each side of the paddle.
MINERvA Test Beam

Goal: To assist in reconstruction and simulation algorithms using beams of known particles and momenta (p, μ, π).

40 planes of Scintillator.

20 planes Fe, and 20 planes Pb acting as absorber materials for Electromagnetic and Hadronic Calorimeters respectively. Can configure to mimic any part of the main detector. Took data Summer of 2010.
The Test Beam detector, with scintillator modules and absorbers visible.
CCQE in MINERνA

Hits are bunched into “Time Slices.” (colored histogram on top) A time slice is a collection of hits occurring in the same (variable) time window.
High resolution tracker allows us to distinguish two photon tracks from π^0 decay.
DIS Event in MINERνA

- Complex final states.
- Develop algorithms which decide which hits to track, and which to classify by calorimetry.
Pattern Recognition based tracking

- Clustering algorithm takes nearby hits, forms into clusters.

- Clustering algorithm is “smart:” only picks out clusters which could have come from a muon.

- Clusters form 2D track candidates, which are merged across three views to form 3D track candidates.

- Track parameters are fit to a Kalman Filter.

Left: Hits seen in MINERvA
Right: Gray dots are clusters. Colored lines are tracks found by filter.
Muon Reconstruction

- For muons that escape the back of MINERνA, we use MINOS and their magnetic field to measure the momentum of the muon.
- From this measurement of the final momentum in MINOS, the MINERνA reconstruction walks the muon track backward through the MINERνA detector, adding back in a mips worth of energy at each step.

\[E_{\text{initial}} = E_{\text{MINOS}} + \sum E_i \]
PID via dE/dx

- Particle Identification is done by matching dE/dx profiles of tracks.
- Fit dE/dx to Bethe-Bloch model with a given mass hypothesis (K, p⁺, π⁻).
- Calculate χ^2 of fit to Bethe-Bloch each different mass hypothesis.
- Assign a particle identity based on χ^2 per NDF minimization.
- Classify profiles with analysis tags. Reco tags this as “vertex activity.”
Reconstruction at Work

- We tested our reconstruction on data and MC. Using CC like events.
- Data: 4.04×10^{19} POT in anti-ν mode.
- MC: MC generator GENIE v 2.6.0
 - GEANT4 detector simulation.
 - 2×10^{19} POT MC, LE Beam MC flux, untuned.
 - Plots Area Normalized.
- Reconstruction code has been improved recently.

All signs point to working reconstruction!
MINERνA is constructed, running and going strong.

MINERνA will make valuable contributions to neutrino and nuclear physics.

Reconstruction has been Tested, is working well.

Physics results are coming soon!
Thank you for listening!
Backup Slides
Readout electronics

Each MINERνA PMT box is connected to a front end electronics board (FEB).

FEBs are responsible for controlling PMT high voltage, digitizing PMT signals, and environmental monitoring.

Digitization is handled by 6 Trip-t chips (technology developed by D0) using pipeline ADCs.
MINERvA Run Plan + POT to Date
Data Acquisition

12 FEBs are daisy-chained together to form a chain. Chains read out in series to a VME module Chain Read Out Card (CROC).

Each CROC is responsible for four chains.

CROCs issue command to chains (open gate, readout ADC blocks, close gate, etc.)

CROCs talk to main DAQ computer via VME for slow control, data storage etc.
MINERvA PMTs

Light from the scintillator travels through the green WLS fiber, until it exits the plane. Clear optic fibers carry the light from the plane to MINERvA PMT boxes (bottom right). Fibers inside the box carry the light to a Hamatsu M-64 PMT. Fiber weave separates adjacent scintillator strips to non-neighboring PMT pixels to reduce optical cross talk. Fibers terminate on a plastic “cookie” which mechanically mates with PMT base.

Cut away of a PMT box, showing the weave, cookie, and PMT. MINERvA has 507 PMT boxes installed.
Structure of Modules (cont'd)

- Target Module: One layer of target material (Fe, C or Pb) and one layer of scintillator (5 modules).
- Tracker Module: Two layers of scintillator (84 modules) 3.71 interaction lengths.
- ECal module: Two sheets of lead, surrounding two layers of scintillator (10 modules) 8.3 rad lengths.
- HCal module: One layer of Fe + one layer of scintillator (20 modules) 3.7 interaction lengths.
In Situ \textit{Flux Measurement}

- Variable beam configurations offer \textit{in situ} flux method.
- Can check cross sections at single E_ν using several beam configurations.
- Measure event spectrum with QEL's.
- Normalize to high energy DIS.
- Goal is 7% error flux shape, 10% norm.