Quantum Wires and Simplexes in an Integrable System

J.B. McGuire

Florida Atlantic University
The fundamental vertex of delta interaction may be interpreted as a single qubit quantum gate that provides a unitary connection among four amplitudes arranged on two "wires" in and two wires out.

The integrability of delta interaction allows these gates to be chained in a space-time triangle, a simplex.

The unitary connection is re-interpreted (by crossing symmetry) into a gate that connects the sheets of a multiply connected Riemann surface.

This reformulation allows accessible computation in the limit of a large number of degrees of freedom, i.e. a reduction in complexity from \(N! \) to \(N \).
SYNOPSIS

- The fundamental vertex of delta interaction may be interpreted as a single qubit quantum gate that provides a unitary connection among four amplitudes arranged on two “wires" in and two wires out.
- The integrability of delta interaction allows these gates to be chained in a space-time triangle, a simplex.
- The unitary connection is re-interpreted (by crossing symmetry) into a gate that connects the sheets of a multiply connected Riemann surface.
- This reformulation allows accessible computation in the limit of a large number of degrees of freedom, i.e. a reduction in complexity from N! to N.
SYNOPSIS

- The fundamental vertex of delta interaction may be interpreted as a single qubit quantum gate that provides a unitary connection among four amplitudes arranged on two "wires" in and two wires out.

- The integrability of delta interaction allows these gates to be chained in a space-time triangle, a simplex.

- The unitary connection is re-interpreted (by crossing symmetry) into a gate that connects the sheets of a multiply connected Riemann surface.

- This reformulation allows accessible computation in the limit of a large number of degrees of freedom, i.e. a reduction in complexity from $N!$ to N.
SYNOPSIS

- The fundamental vertex of delta interaction may be interpreted as a single qubit quantum gate that provides a unitary connection among four amplitudes arranged on two “wires” in and two wires out.

- The integrability of delta interaction allows these gates to be chained in a space-time triangle, a simplex.

- The unitary connection is re-interpreted (by crossing symmetry) into a gate that connects the sheets of a multiply connected Riemann surface.

- This reformulation allows accessible computation in the limit of a large number of degrees of freedom, i.e. a reduction in complexity from \(N! \) to \(N \).
Delta interaction is an integrable quantum system composed of equivalent point particles in 1(space)+1(time) dimensions.
DYNAMICS

1. Particles travel freely (without acceleration) between elastic collisions that occur when particle coordinates are equal.

2. The particles are distinguishable and their identity is preserved in a collision.

3. A single particle “travels” on a straight world line or “quantum wire”, a line of constant slope in space-time.

4. Two particles travel on two straight world lines that intersect at a single point in space-time, a vertex of the quantum wires.

5. Three particles travel on three straight world lines whose intersections lie at the vertices of a triangle in space-time, a simplex.
1. Particles travel freely (without acceleration) between elastic collisions that occur when particle coordinates are equal.

2. The particles are distinguishable and their identity is preserved in a collision.

3. A single particle "travels" on a straight world line or "quantum wire", a line of constant slope in space-time.

4. Two particles travel on two straight world lines that intersect at a single point in space-time, a vertex of the quantum wires.

5. Three particles travel on three straight world lines whose intersections lie at the vertices of a triangle in space-time, a simplex.
1. Particles travel freely (without acceleration) between elastic collisions that occur when particle coordinates are equal.

2. The particles are distinguishable and their identity is preserved in a collision.

3. A single particle “travels" on a straight world line or “quantum wire", a line of constant slope in space-time.

4. Two particles travel on two straight world lines that intersect at a single point in space-time, a vertex of the quantum wires.

5. Three particles travel on three straight world lines whose intersections lie at the vertices of a triangle in space-time, a simplex.
DYNAMICS

1. Particles travel freely (without acceleration) between elastic collisions that occur when particle coordinates are equal.
2. The particles are distinguishable and their identity is preserved in a collision.
3. A single particle “travels" on a straight world line or “quantum wire", a line of constant slope in space-time.
4. Two particles travel on two straight world lines that intersect at a single point in space-time, a vertex of the quantum wires.
5. Three particles travel on three straight world lines whose intersections lie at the vertices of a triangle in space-time, a simplex.
DYNAMICS

1. Particles travel freely (without acceleration) between elastic collisions that occur when particle coordinates are equal.
2. The particles are distinguishable and their identity is preserved in a collision.
3. A single particle "travels" on a straight world line or "quantum wire", a line of constant slope in space-time.
4. Two particles travel on two straight world lines that intersect at a single point in space-time, a vertex of the quantum wires.
5. Three particles travel on three straight world lines whose intersections lie at the vertices of a triangle in space-time, a simplex.
TWO PARTICLE PROBLEM 1

Figure: Two particle diagram
TWO PARTICLE PROBLEM 2

Figure: A delta interaction encounter in space-time

\[\Psi(x, y) = \begin{cases} f_a e^{ik_ax} e^{ik_by} - f_b e^{ik_bx} e^{ik_ay} & x < y \\ f'_a e^{ik_ax} e^{ik_by} - f'_b e^{ik_bx} e^{ik_ay} & x > y \end{cases} \]
The events “transmission” and “reflection” are complementary

\[TT^* + RR^* = 1. \]

The events “transmission” and “reflection” are mutually exclusive

\[TR^* + RT^* = 0. \]

This “transfer matrix” is unitary and symmetric (because the particles are equivalent)
THE THREE PARTICLE PROBLEM 1

Figure: Three particle simplexes

Amplitude for simplex on left = Amplitude for simplex on right

\[T_{ab} R_{bc} R_{ac} + R_{ab} R_{bc} T_{ac} = R_{ab} T_{bc} R_{ac} \]
THE THREE PARTICLE PROBLEM 2

\[\frac{T_{ab}}{R_{ab}} + \frac{T_{bc}}{R_{bc}} = \frac{T_{ac}}{R_{ac}}. \]

Satisfied if

\[\frac{T_{ab}}{R_{ab}} = \frac{i(k_a - k_b)}{g} = i\rho_{ab} \]

\[T = \frac{i\rho}{i\rho - 1} R = \frac{1}{i\rho = 1} \]
The two particle equations are two relations among four amplitudes:

\[
\begin{pmatrix} f'_a \\ -f'_b \end{pmatrix} = \begin{pmatrix} T_{ab} & -R_{ab} \\ -R_{ab} & T_{ab} \end{pmatrix} \begin{pmatrix} f_a \\ -f'_b \end{pmatrix}
\]

The relations contain the same information if this matrix equation is multiplied by any 2×2 matrix, or if the matrix is conjugated with any unitary transformation.
The same information is also contained if we rewrite the matrix using crossing symmetry

\[
\begin{pmatrix}
 f'_a \\
 f_a
\end{pmatrix} = \begin{pmatrix}
 1 - \frac{i(k_b-k_a)}{g} & \frac{i(k_b-k_a)}{g} \\
 -\frac{i(k_b-k_a)}{g} & 1 + \frac{i(k_b-k_a)}{g}
\end{pmatrix}
\begin{pmatrix}
 f'_b \\
 f_b
\end{pmatrix}.
\]

The \(2 \times 2\) “transfer matrix” factors into a pair of commuting matrices, leading to a separation of \(a, b\).

\[
\tau(k_a - c_{xy}) \begin{pmatrix}
 f'(k_a) \\
 f(k_a)
\end{pmatrix} = \tau(k_b - c_{xy}) \begin{pmatrix}
 f'(k_b) \\
 f(k_b)
\end{pmatrix} = \begin{pmatrix}
 s_{xy} \\
 1
\end{pmatrix}
\]

and \(c_{xy}, s_{xy}\) are separation constants associated with coordinates \(x, y\).
\[\tau(k - c) = \left(\begin{array}{cc} 1 - \frac{i(k-c)}{g} & \frac{i(k-c)}{g} \\ - \frac{i(k-c)}{g} & 1 + \frac{i(k-c)}{g} \end{array} \right). \]

Thus,

\[\frac{f'(k)}{f(k)} = \frac{s + \frac{i(k-c)}{g}(s - 1)}{1 + \frac{i(k-c)}{g}(s - 1)} = \nu((k)). \]

The separation constant \(s^2 = 1 \), because \(\nu \) is a phase. If \(s=1 \),
\(\nu=1 \) if \(s = -1 \)

\[\frac{f'(k)}{f(k)} = \frac{2i(k-c)}{g} + 1 = \nu((k)). \]
CONCLUSION

1. No matter how many degrees of freedom the problem is reducible to one particle simplexes.

2. This is a reduction from $N!$ regions of a simply connected region to N sheets of a multiply connected Riemann surface.

Figure: One particle simplex