E_{10}, $K(E_{10})$, and Unification

Hermann Nicolai
MPI für Gravitationsphysik (AEI), Potsdam
Celebrating ten years of AdS/CFT
Lago Mar Resort, 13 - 18 December 2007

(mostly) based on work done in collaboration with:
Thibault Damour, Axel Kleinschmidt and Marc Henneaux
E_{10}, $K(E_{10})$, and Unification

Hermann Nicolai
MPI für Gravitationsphysik (AEI), Potsdam

Celebrating ten years of AdS/CFT
Lago Mar Resort, 13 - 18 December 2007

(mostly) based on work done in collaboration with:
Thibault Damour, Axel Kleinschmidt and Marc Henneaux

Main message of this talk:
Search for unification = search for symmetries
Most successful guiding principle of physics
E_{10}, $K(E_{10})$, and Unification

Hermann Nicolai
MPI für Gravitationsphysik (AEI), Potsdam

Celebrating ten years of AdS/CFT
Lago Mar Resort, 13 - 18 December 2007

(mostly) based on work done in collaboration with:
Thibault Damour, Axel Kleinschmidt and Marc Henneaux

Main message of this talk:
Search for unification = search for symmetries
Most successful guiding principle of physics
... and perhaps also for quantum gravity...
The BKL Paradigm

Near a spacelike (cosmological) singularity, Einstein equations should simplify \(\Rightarrow \) BKL decoupling: \(\partial_x \ll \partial_t \)?

[BKL ≡ Belinskii, Khalatnikov, Lifshitz (1972)]
Near a spacelike (cosmological) singularity, Einstein equations should simplify ⇒ BKL decoupling: $\partial_x \ll \partial_t$?

[BKL = Belinskii, Khalatnikov, Lifshitz (1972)]
Near a spacelike (cosmological) singularity, Einstein equations should simplify \Rightarrow BKL decoupling: $\partial_x \ll \partial_t$?

[BKL \equiv Belinskii, Khalatnikov, Lifshitz (1972)]

Dimensional reduction to one (time) dimension \rightarrow effective dynamics near singularity from gradient expansion? \rightarrow billiards, chaotic oscillations, etc.
Another (old) paradigm

Cosmological evolution as ‘geodesic motion’ in the moduli space of 3-geometries [Wheeler, DeWitt,...]:

\[M \equiv G^{(3)} = \frac{\{\text{spatial metrics } g_{ij}(x)\}}{\{\text{diffeomorphisms}\}} \]
Another (old) paradigm

Cosmological evolution as ‘geodesic motion’ in the moduli space of 3-geometries [Wheeler, DeWitt,...]:

\[\mathcal{M} \equiv G^{(3)} = \left\{ \text{spatial metrics } g_{ij}(x) \right\} / \left\{ \text{diffeomorphisms} \right\} \]

Can we understand and ‘simplify’ \(\mathcal{M} \) by means of an embedding into a group theoretical coset \(G/K(G) \)?
Another (old) paradigm

Cosmological evolution as ‘geodesic motion’ in the moduli space of 3-geometries [Wheeler, DeWitt,...]:

\[\mathcal{M} \equiv \mathcal{G}^{(3)} = \left\{ \text{spatial metrics } g_{ij}(x) \right\} / \{ \text{diffeomorphisms} \} \]

Can we understand and ‘simplify’ \(\mathcal{M} \) by means of an embedding into a group theoretical coset \(G/K(G) \)?

The prototype example: moduli space of solutions of Einstein equations with two commuting Killing vectors

\[\mathcal{M} = A_{1}^{(1)} / K(A_{1}^{(1)}) , \quad A_{1}^{(1)} \equiv SL(2, \mathbb{R})_{c.e.} = \text{Geroch group} \]
Another (old) paradigm

- Cosmological evolution as ‘geodesic motion’ in the moduli space of 3-geometries \([\text{Wheeler, DeWitt,\ldots}]\):

\[
\mathcal{M} \equiv G^{(3)} = \left\{ \text{spatial metrics } g_{ij}(x) \right\} / \{ \text{diffeomorphisms} \}
\]

- Can we understand and ‘simplify’ \(\mathcal{M}\) by means of an embedding into a group theoretical coset \(G/K(G)\)?

- The prototype example: moduli space of solutions of Einstein equations with two commuting Killing vectors

\[
\mathcal{M} = A_1^{(1)}/K(A_1^{(1)}) , \quad A_1^{(1)} \equiv SL(2,\mathbb{R})_{c.e.} = \text{Geroch group}
\]

- Unification of space-time, matter and gravitation: configuration space \(\mathcal{M}\) for quantum gravity should consistently incorporate matter degrees of freedom.

\(E_{10}\) and \(K(E_{10})\): re-inventing M theory? – p.3/16
Hidden symmetries

Reduction of **SUGRA**\(_{11}\) to \(D = 11 - n\) [Cremmer, Julia (1979)]

<table>
<thead>
<tr>
<th>(n)</th>
<th>Scalar Coset (E_n/K(E_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(GL(1)/1)</td>
</tr>
<tr>
<td>2</td>
<td>(GL(2)/SO(2))</td>
</tr>
<tr>
<td>3</td>
<td>(SL(3) \times SL(2)/U(2))</td>
</tr>
<tr>
<td>4</td>
<td>(SL(5)/SO(5))</td>
</tr>
<tr>
<td>5</td>
<td>(SO(5,5)/SO(5) \times SO(5))</td>
</tr>
<tr>
<td>6</td>
<td>(E_6/USp(4))</td>
</tr>
<tr>
<td>7</td>
<td>(E_7/SU(8))</td>
</tr>
<tr>
<td>8</td>
<td>(E_8/(Spin(16)/\mathbb{Z}_2))</td>
</tr>
<tr>
<td>9</td>
<td>(E_9/K(E_9))</td>
</tr>
<tr>
<td>10</td>
<td>(E_{10}/K(E_{10}))</td>
</tr>
<tr>
<td>11</td>
<td>(E_{11}/K(E_{11}))</td>
</tr>
</tbody>
</table>

\(E_{10}\) and \(K(E_{10})\) : re-inventing M theory? – p.4/16
from dimensional reduction to $\mathbb{D} = 1$?

However: $L = L(g_{ij}(t))$, $A_{ijk}(t)$ is only invariant under $\text{GL}(10; \mathbb{R})_n$.

...but: Effective dynamics of diagonal metric degrees of freedom is governed by cosmological billiards in Weyl chamber of E_{10}!

[Damour, Henneaux, hep-th/0012172; DHN, hep-th/0212256]

Motivates basic conjecture: $M = E_{10} = K(E_{10})$.

Dynamics of supergravity (or some M theoretic extension) Null geodesic motion on $E_{10} = K(E_{10})$ coset space are equivalent! [DHN, hep-th/0207267]

SUGRA eqs. of motion + canonical constraints 1-component geodesic eqn. and coset constraints
E_{10} from dimensional reduction to $D = 1$?
\[E_{10} \text{ from dimensional reduction to } D = 1? \]

However: \[\mathcal{L} = \mathcal{L}(g_{ij}(t), A_{ijk}(t)) \] is only invariant under \(GL(10, \mathbb{R}) \times T_{120} \) ... but:
E_{10} from dimensional reduction to $D = 1$?

However: $\mathcal{L} = \mathcal{L}(g_{ij}(t), A_{ijk}(t))$ is only invariant under $GL(10, \mathbb{R}) \times T^{120} \ldots$ but:

Effective dynamics of diagonal metric degrees of freedom is governed by *cosmological billiards* in Weyl chamber of E_{10}!

[Damour, Henneaux, hep-th/0012172; DHN, hep-th/0212256]
$\Rightarrow E_{10}$ from dimensional reduction to $D = 1$?

However: $\mathcal{L} = \mathcal{L}(g_{ij}(t), A_{ijk}(t))$ is only invariant under $GL(10, \mathbb{R}) \times T_{120}$... but:

Effective dynamics of diagonal metric degrees of freedom is governed by *cosmological billiards* in Weyl chamber of E_{10}!

[Damour, Henneaux, hep-th/0012172; DHN, hep-th/0212256]

motivates **BASIC CONJECTURE:** $\mathcal{M} = E_{10}/K(E_{10})$

Dynamics of supergravity (or some M theoretic extension) and null geodesic motion on $E_{10}/K(E_{10})$ coset space are equivalent! [DHN, hep-th/0207267]

SUGRA eqs. of motion + canonical constraints \Leftrightarrow ∞-component geodesic eqn. and coset constraints
Definition of E_{10}
Definition of \(E_{10} \)

\(E_{10} \) is the Kac–Moody group with Kac–Moody Lie algebra \(g \cong e_{10} \) of rank 10 defined via the Dynkin diagram.

![Dynkin diagram](image)

Cartan matrix \(A_{ij} \)

\(E_{10} \) and \(K(E_{10}) \): re-inventing M theory? – p.6/16
Definition of E_{10}

E_{10} is the Kac–Moody group with Kac–Moody Lie algebra $\mathfrak{g} \equiv e_{10}$ of rank 10 defined via the Dynkin diagram

\[1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \]

\[A_{ij} \]

Cartan matrix

Chevalley–Serre presentation: Generators h_i, e_i, f_i for $i = 1, \ldots, 10$ with relations

\[
\begin{align*}
[h_i, h_j] &= 0, \\
[h_i, e_j] &= A_{ij}e_j, \\
[h_i, f_j] &= -A_{ij}f_j, \\
(e_i)^{1-A_{ij}}e_j &= 0, \\
(f_i)^{1-A_{ij}}f_j &= 0.
\end{align*}
\]
Definition of E_{10}

E_{10} is the Kac–Moody group with Kac–Moody Lie algebra $g \cong e_{10}$ of rank 10 defined via the Dynkin diagram

Chevalley–Serre presentation: Generators h_i, e_i, f_i for $i = 1, \ldots, 10$ with relations

$$
[h_i, h_j] = 0, \quad [e_i, f_j] = \delta_{ij} h_i, \\
[h_i, e_j] = A_{ij} e_j, \quad [h_i, f_j] = -A_{ij} f_j, \\
(ad e_i)^{1-A_{ij}} e_j = 0, \quad (ad f_i)^{1-A_{ij}} f_j = 0.
$$

h_i span Cartan subalgebra \mathfrak{h}; e_i and f_i: positive and negative simple root generators

E_{10} and $K(E_{10})$: re-inventing M theory? – p.6/16
Key Properties
Key Properties

Root space decomposition: \(\alpha \in Q(E_{10}) = \Pi_{1,9} \)

\[g_\alpha = \{ x \in g : [h, x] = \alpha(h)x \quad \text{for} \ h \in h \} \]

Real roots \((\alpha^2 = 2) \) and imaginary roots \((\alpha^2 \leq 0) \)
Key Properties

- Root space decomposition: $\alpha \in Q(E_{10}) = \Pi_{1,9}$

$$g_\alpha = \{ x \in g : [h, x] = \alpha(h)x \text{ for } h \in h \}$$

Real roots ($\alpha^2 = 2$) and imaginary roots ($\alpha^2 \leq 0$)

- Weyl group: $W^+(E_{10}) = \text{PSL}_2(\mathbb{O}_\mathbb{Z})$ [KN+Feingold (2007)]
Key Properties

- Root space decomposition: $\alpha \in Q(E_{10}) = \Pi_{1,9}$

 $$\mathfrak{g}_\alpha = \{ x \in \mathfrak{g} : [h, x] = \alpha(h)x \ \text{for} \ h \in \mathfrak{h} \}$$

 Real roots ($\alpha^2 = 2$) and imaginary roots ($\alpha^2 \leq 0$)

- Weyl group: $W^+(E_{10}) = \text{PSL}_2(\mathbb{O}_\mathbb{Z})$ [KN+Feingold (2007)]

- Invariant bilinear form \rightarrow Action Principle

 $$\langle h_i | h_j \rangle = A_{ij}, \quad \langle e_i | f_j \rangle = \delta_{ij}, \quad \langle [x, y] | z \rangle = \langle x | [y, z] \rangle.$$

 [No other polynomial Casimir for dim $\mathfrak{g} = \infty \rightarrow$ action is (essentially) unique!]
Key Properties

- Root space decomposition: \(\alpha \in Q(E_{10}) = \Pi_{1,9} \)
 \[g_{\alpha} = \{x \in g : [h, x] = \alpha(h)x \text{ for } h \in h\} \]

 Real roots (\(\alpha^2 = 2\)) and imaginary roots (\(\alpha^2 \leq 0\))

- Weyl group: \(W^+(E_{10}) = PSL_2(\mathbb{O}_\mathbb{Z}) \) [KN+Feingold (2007)]

- Invariant bilinear form
 \[\langle h_i | h_j \rangle = A_{ij}, \quad \langle e_i | f_j \rangle = \delta_{ij}, \quad \langle [x, y] | z \rangle = \langle x | [y, z] \rangle. \]

 [No other polynomial Casimir for \(\dim g = \infty \) → action is (essentially) unique!]

- Triangular decomposition
 \[g = e_{10} = n_- \oplus h \oplus n_+ \]
 \(\text{with } n_\pm := \bigoplus_{\alpha \geq 0} g_{\alpha} \)

\(E_{10} \) and \(K(E_{10}) \): re-inventing M theory? – p.7/16
Compact subalgebra $K(e_{10})$

Chevalley involution on e_{10} is defined by

$$(e_i) = f_i; (f_i) = e_i; (h_i) = h_i$$

and extends to all of e_{10} by

$$(x; y) = [x; y].$$

Fixed point set $K_{e_{10}} = x^2 e_{10}$ is a subalgebra of e_{10}, called the compact subalgebra.

However, $K_{e_{10}}$ is not a Kac-Moody algebra [KN, hep-th/0506238].
Compact subalgebra $K(e_{10})$

Chevalley involution ω on e_{10} is defined by

$$\omega(e_i) = -f_i, \quad \omega(f_i) = -e_i, \quad \omega(h_i) = -h_i$$

and extends to all of e_{10} by $\omega([x, y]) = [\omega(x), \omega(y)]$.
Compact subalgebra $K(e_{10})$

Chevalley involution ω on e_{10} is defined by

$$\omega(e_i) = -f_i, \quad \omega(f_i) = -e_i, \quad \omega(h_i) = -h_i$$

and extends to all of e_{10} by $\omega([x, y]) = [\omega(x), \omega(y)]$.

Fixed point set

$$\mathfrak{e}_{10} \equiv K(e_{10}) = \{ x \in e_{10} : \omega(x) \equiv -x^T = x \}$$

is a subalgebra of e_{10}, called the **compact subalgebra**.
Compact subalgebra $K(e_{10})$

Chevalley involution ω on e_{10} is defined by

$$\omega(e_i) = -f_i, \quad \omega(f_i) = -e_i, \quad \omega(h_i) = -h_i$$

and extends to all of e_{10} by $\omega([x, y]) = [\omega(x), \omega(y)]$.

Fixed point set

$$k_{10} \equiv K(e_{10}) = \{x \in e_{10} : \omega(x) \equiv -x^T = x\}$$

is a subalgebra of e_{10}, called the compact subalgebra.

→ generalizes compact subalgebra of finite dimensional Lie algebras (in split real form; e.g. $so(n) \subset gl(n)$)
Compact subalgebra $K(e_{10})$

Chevalley involution ω on e_{10} is defined by

$$\omega(e_i) = -f_i, \quad \omega(f_i) = -e_i, \quad \omega(h_i) = -h_i$$

and extends to all of e_{10} by $\omega([x, y]) = [\omega(x), \omega(y)]$.

Fixed point set

$$\mathfrak{k}_{10} \equiv K(e_{10}) = \{ x \in e_{10} : \omega(x) \equiv -x^T = x \}$$

is a subalgebra of e_{10}, called the compact subalgebra.

→ generalizes compact subalgebra of finite dimensional Lie algebras (in split real form; e.g. $\mathfrak{so}(n) \subset \mathfrak{gl}(n)$)

However: \mathfrak{k}_{10} is not a Kac-Moody algebra [KN, hep-th/0506238]
Level decomposition: $A_9 \subset \epsilon_{10}$
Level decomposition: $A_9 \subset \mathfrak{e}_{10}$

These are just the representations corresponding to the bosonic fields of $D=11$ SUGRA and their magnetic duals. At level $\ell = 3$:

For more representations, see: Fischbacher, N. hep-th/0301017
Level decomposition: \(A_9 \subset e_{10} \)

\[
\begin{array}{|c|c|c|}
\hline
\ell & A_9 \text{ module} & \text{Tensor} \\
\hline
0 & [1000000001] \oplus [0000000000] & K_{a}^{\ b} \\
1 & [000000100] & E^{abc} \\
2 & [0001000000] & E^{a_1\ldots a_6} \\
3 & [010000001] & E^{a_1\ldots a_8 | a_9} \\
\hline
\end{array}
\]

\[\mathfrak{sl}(10) \equiv A_9 \subset e_{10} \]
These are just the representations corresponding to the bosonic fields of $D = 11$ SUGRA and their magnetic duals.

At level $\ell = 3$: dual graviton $h_{a_1\ldots a_8 | a_9}$ (with $h_{[a_1\ldots a_8 | a_9]} = 0$)

[For more representations, see: Fischbacher, N. hep-th/0301017]
Versatility of E_{10} ($\& E_{11}$)
Versatility of E_{10} ($&$ E_{11})

The one-dimensional E_{10} σ-model unifies
Versatility of E_{10} (& E_{11})

The one-dimensional E_{10} σ-model unifies

$\mathfrak{sl}(10) \subseteq e_{10}$

$D = 11$ SUGRA

[DHN; West 2002]
Versatility of E_{10} (\& E_{11})

The one-dimensional E_{10} σ-model unifies

$\mathfrak{sl}(10) \subseteq \mathfrak{e}_{10}$

$D = 11$ SUGRA

[DHN; West 2002]

$\mathfrak{so}(9, 9) \subseteq \mathfrak{e}_{10}$

mIIA $D = 10$ SUGRA

[Kleinschmidt, Schnakenburg, West 2003]
[Kleinschmidt, N. 2004]
Versatility of E_{10} (& E_{11})

The one-dimensional E_{10} σ-model unifies

$\mathfrak{sl}(10) \subseteq e_{10}$

$D = 11$ SUGRA

[DHN; West 2002]

$\mathfrak{so}(9, 9) \subseteq e_{10}$

$mIIA \ D = 10$ SUGRA

[Kleinschmidt, Schnakenburg, West 2003]
[Kleinschmidt, N. 2004]

$\mathfrak{sl}(9) \oplus \mathfrak{sl}(2) \subseteq e_{10}$

$IIB \ D = 10$ SUGRA

[Kleinschmidt, Schnakenburg, West 2003]
[Kleinschmidt, N. 2004]
Versatility of E_{10} (& E_{11})

The one-dimensional E_{10} σ-model unifies

\[\mathfrak{sl}(10) \subseteq e_{10} \]

$D = 11$ SUGRA

[DHN; West 2002]

\[\mathfrak{so}(9, 9) \subseteq e_{10} \]

mIIA $D = 10$ SUGRA

[Kleinschmidt, Schnakenburg, West 2003]

[Kleinschmidt, N. 2004]

\[\mathfrak{sl}(9) \oplus \mathfrak{sl}(2) \subseteq e_{10} \]

IIB $D = 10$ SUGRA

[Kleinschmidt, Schnakenburg, West 2003]

[Kleinschmidt, N. 2004]

These are the (maximal) low energy theories of the ‘M-theory diagram’, now all part of a single model.
Dynamics: bosonic Lagrangian

Decompose Cartan form for $V(t)^2 E_{10} = K(E_{10})$

$\mathbb{V}_t^1(V(t)) = Q(t) + P(t)$

$Q_2 e^{10} k^1_0$

$P_2 e^{10} k^1_0$

essentially unique coset Lagrangian ($n(t)$ = lapse)

$L = \frac{1}{2} n h P^j P_j$

invariant under local $K(E_{10})$ and global E_{10}:

$V(t) = k^1_0 P_k$

Equations of motion:

null geodesic on $E_{10} = K(E_{10})$

$n @ t (n P^j P_j) = Q; P^j P_j = 0$
Dynamics: bosonic Lagrangian

Decompose Cartan form for $\mathcal{V}(t) \in E_{10}/K(E_{10})$

$$\partial_t \mathcal{V} \mathcal{V}^{-1}(t) = Q(t) + \mathcal{P}(t) \quad , \quad Q \in k_{10} \; , \; \mathcal{P} \in e_{10} \otimes k_{10}$$
Dynamics: bosonic Lagrangian

Decompose Cartan form for $\mathcal{V}(t) \in E_{10}/K(E_{10})$

$$\partial_t \mathcal{V} \mathcal{V}^{-1}(t) = Q(t) + \mathcal{P}(t), \quad Q \in \mathfrak{k}_{10}, \; \mathcal{P} \in \mathfrak{e}_{10} \ominus \mathfrak{k}_{10}$$

\Rightarrow essentially unique coset Lagrangian $(n(t) = \text{lapse})$

$$\mathcal{L} = \frac{1}{2n} \langle \mathcal{P} | \mathcal{P} \rangle.$$
Dynamics: bosonic Lagrangian

Decompose Cartan form for $\mathcal{V}(t) \in E_{10}/K(E_{10})$

$$\partial_t \mathcal{V} \mathcal{V}^{-1}(t) = Q(t) + \mathcal{P}(t) \quad , \quad Q \in \mathfrak{k}_{10} \quad , \quad \mathcal{P} \in \mathfrak{e}_{10} \oplus \mathfrak{k}_{10}$$

\Rightarrow essentially unique coset Lagrangian ($n(t) =$ lapse)

$$\mathcal{L} = \frac{1}{2n} \langle \mathcal{P} | \mathcal{P} \rangle .$$

invariant under **local** $K(E_{10})$ and **global** E_{10}:

$$\mathcal{V}(t) \rightarrow k(t) \mathcal{V}(t) g \ \Rightarrow \ \mathcal{P} \rightarrow k \mathcal{P} k^{-1} , \ \mathcal{Q} \rightarrow k \mathcal{Q} k^{-1} + \partial_t kk^{-1}$$
Dynamics: bosonic Lagrangian

Decompose Cartan form for $\mathcal{V}(t) \in E_{10}/K(E_{10})$

$$\partial_t \mathcal{V}^{-1}(t) = Q(t) + P(t) \quad , \quad Q \in \mathfrak{k}_{10} \ , \ P \in \mathfrak{e}_{10} \ominus \mathfrak{k}_{10}$$

\Rightarrow essentially unique coset Lagrangian ($n(t)$ = lapse)

$$\mathcal{L} = \frac{1}{2n} \langle P | P \rangle.$$

invariant under local $K(E_{10})$ and global E_{10}:

$$\mathcal{V}(t) \rightarrow k(t) \mathcal{V}(t)g \Rightarrow \quad P \rightarrow kPK^{-1} \quad , \quad Q \rightarrow kQk^{-1} + \partial_t kk^{-1}$$

Equations of motion: null geodesic on $E_{10}/K(E_{10})$

$$n \partial_t (n^{-1}P) = [Q, P], \quad \langle P | P \rangle = 0.$$
Example: $A_9 \subset E_{10}$
Example: $A_9 \subset E_{10}$

With $\partial_t \mathcal{V} \mathcal{V}^{-1} = \sum_{\ell \geq 0} P^{(\ell)} \ast E^{(\ell)}$ (schematically) and truncation $P^{(\ell)} = 0$ for $\ell > 3$ \Rightarrow

Equations of motion up to $\ell = 3$ ($a, b = 1, \ldots, 10$) [DHN; DN, hep-th/0410245]

\[
 nD^{(0)}(n^{-1}P^{(0)}_{ab}) = -\frac{1}{4} (P^{(1)}_{acd} P^{(1)}_{bcd} - \frac{1}{9} \delta_{ab} P^{(1)}_{cde} P^{(1)}_{cde}) \\
 - \frac{1}{2 \cdot 5!} (P^{(2)}_{ac1 \ldots c5} P^{(2)}_{bc1 \ldots c5} - \frac{1}{9} \delta_{ab} P^{(2)}_{c1 \ldots c6} P^{(2)}_{c1 \ldots c6}) \\
 + \frac{4}{9!} (P^{(3)}_{ac1 \ldots c7|c8} P^{(3)}_{bc1 \ldots c7|c8} + \frac{1}{8} P^{(3)}_{c1 \ldots c8|a} P^{(3)}_{c1 \ldots c8|b} \\
 - \frac{1}{8} \delta_{ab} P^{(3)}_{c1 \ldots c8|c9} P^{(3)}_{c1 \ldots c8|c9})
\]

\[
 nD^{(0)}(n^{-1}P^{(1)}_{abc}) = -\frac{1}{6} P^{(2)}_{abcdef} P^{(1)}_{def} + \frac{1}{3 \cdot 5!} P^{(3)}_{abcd1 \ldots d5|d6} P^{(2)}_{d1 \ldots d6}
\]

\[
 nD^{(0)}(n^{-1}P^{(2)}_{a1 \ldots a6}) = \frac{1}{6} P^{(3)}_{a1 \ldots a6cde} P^{(1)}_{cde}
\]

\[
 nD^{(0)}(n^{-1}P^{(3)}_{a1 \ldots a8|a9}) = 0 \quad \text{(with } P^{(3)}_{[a1 \ldots a8|a9]} = 0).\]

This is a consistent truncation of $E_{10}/K(E_{10})$ coset dynamics: solutions of truncated theory are also solutions of the full theory.
Correspondence with SUGRA$_{11}$
Correspondence with SUGRA$_{11}$

Bosonic $D = 11$ supergravity equations [Cremmer, Julia, Scherk 1978]

\[\mathcal{E}_{AB} \equiv R_{AB} - \frac{1}{3} F_{ACDE} F_{B}^{CDE} + \frac{1}{36} \eta_{AB} F_{CDE} F_{CDE}^{CDE} = 0 \]

\[\mathcal{M}^{BCD} \equiv D_A F^{ABCD} + \frac{1}{576} \epsilon^{BCDE_1...E_8} F_{E_1...E_4} F_{E_5...E_8} = 0 \]

and Bianchi identities: $D_{[A} F_{BCDE]} = R_{[AB} C]D = 0$
Correspondence with SUGRA\textsubscript{11}

Bosonic $D = 11$ supergravity equations [Cremmer, Julia, Scherk 1978]

\begin{align*}
\mathcal{E}_{AB} &\equiv R_{AB} - \frac{1}{3} F_{ACDE} F_{B}^{CDE} + \frac{1}{36} \eta_{AB} F_{CDE} F^{CDE} = 0 \\
\mathcal{M}^{BCD} &\equiv D_{A} F^{ABCD} + \frac{1}{576} e^{BCDE_{1}...E_{8}} F_{E_{1}...E_{4}} F_{E_{5}...E_{8}} = 0
\end{align*}

and Bianchi identities: $D_{[A} F_{BCDE]} = R_{[AB C]D} = 0$

Consider gauge fixed (à la ADM) equations at some fixed spatial point x_{0}:

- keeping all temporal and first order spatial derivatives at x_{0}

- zero-shift gauge: $E_{M}^{A} = \left(\begin{array}{c|c} N & 0 \\ \hline 0 & e_{m}^{a} \end{array} \right)$ and Coulomb gauge: $A_{tmn} = 0$

- Anholonomy coefficients $[\partial_{b}, \partial_{c}] = \tilde{\Omega}_{bc|a} \partial_{a}$ chosen traceless (in some neighborhood of x_{0}) by exploiting spatial Lorentz group, i.e. $\Lambda_{ab} = \Lambda_{ab}(t, x)$ [???]

- Thus the standard ADM procedure leads to usual split into:

 - Dynamical equations: $\mathcal{E}_{ab} = \mathcal{M}_{abc} = D_{[0} F_{bcde]} = R_{[0a b]c} = 0$

 - Canonical constraints: $\mathcal{E}_{00} = \mathcal{E}_{0a} = \mathcal{M}_{0ab} = D_{[a} F_{bcde]} = R_{[ab c]d} = 0$

E_{10} and $K(E_{10})$: re-inventing M theory? – p.13/16
Correspondence with SUGRA

Bosonic $D = 11$ supergravity equations [Cremmer, Julia, Scherk 1978]

$$\mathcal{E}_{AB} \equiv R_{AB} - \frac{1}{3} F_{ACDE} F_B^{CDE} + \frac{1}{36} \eta_{AB} F_{CDE} F^{CDE} = 0$$

$$\mathcal{M}^{BCD} \equiv D_A F^{ABCD} + \frac{1}{576} \epsilon^{BCDE_1...E_8} F_{E_1...E_4} F_{E_5...E_8} = 0$$

and Bianchi identities: $D_{[A} F_{BCDE]} = R_{[AB C]D} = 0$

Then with the identification $n = N e^{-1}$ and (r.h.s. always at fixed spatial point $x = x_0$)

$$D^{(0)} P^{(0)}_{ab} = R_{ab}^{\text{time derivatives}}$$

$$P^{(1)}_{abc} = N F_{0abc}$$

$$P^{(2)}_{a_1...a_6} = -\frac{1}{4!} N e_{a_1...a_6 b_1...b_4} F_{b_1...b_4}$$

$$P^{(3)}_{a_1...a_8|a_9} = \frac{3}{2} N e_{a_1...a_8 bc} \tilde{\Omega}_{bc|a_9}$$

the two sets of dynamical equations coincide! (recall $P^{(3)}_{[a_1...a_8|a_9]} = 0 \iff \tilde{\Omega}_{ab|b} = 0$)

Dynamical equations for mIIA and IIB similarly from level decompositions w.r.t. finite dimensional subgroups $D_9 \equiv SO(9, 9) \subset E_{10}$ and $A_8 \times A_1 \equiv SL(9) \times SL(2) \subset E_{10}$.

E_{10} and $K(E_{10})$: re-inventing M theory? – p.13/16
Constraints: an intriguing link
Conserved E_{10} current $J = n \mathcal{V} \mathcal{V}^{-1}$ (≡ Noether charge associated with global E_{10}):

$$J = \frac{1}{9!} J^{m_0|m_1...m_8} F_{m_0|m_1...m_8} + \frac{1}{6!} J^{m_1...m_6} F_{m_1...m_6} + \frac{1}{3!} J^{mn} F_{mn}$$

$$+ J_{(0)m} K^{m} n + \frac{1}{3!} J_{(1) mnp} E^{mnp} + \frac{1}{6!} J_{(2) m_1...m_6} E^{m_1...m_6} + \ldots$$
Constraints: an intriguing link

Conserved E_{10} current $\mathcal{J} = n\mathcal{V}\mathcal{P}\mathcal{V}^{-1}$ (≡ Noether charge associated with global E_{10}):

$$\mathcal{J} = \frac{1}{9!} J_{m_0|m_1 \ldots m_8} F_{m_0|m_1 \ldots m_8} + \frac{1}{6!} J_{m_1 \ldots m_6} F_{m_1 \ldots m_6} + \frac{1}{3!} J_{mnp} F_{mnp}$$

$$+ J_{n}^{m} K_{m}^{n} + \frac{1}{3!} J_{(0) mnp} E^{mnp} + \frac{1}{6!} J_{(2) m_1 \ldots m_6} E^{m_1 \ldots m_6} + \ldots$$

Consider Sugawara-like ($\propto \mathcal{J} \otimes \mathcal{J}$) expressions [DKN, hep-th 0709.2691]

$$\mathcal{L}_{m_1 \ldots m_10; n_0|n_1 \ldots n_7}^{(-6)} = J_{n_0|m_1 \ldots m_8}^{(-3)} J_{m_9|m_10 n_1 \ldots n_7}^{(-3)}$$

$$\mathcal{L}_{m_1 \ldots m_10; n_1 \ldots n_5}^{(-5)} = J_{n_1 \ldots n_4 m_1 m_2}^{(-2)} J_{m_3 \ldots m_10}^{(-3)}$$

$$\mathcal{L}_{m_1 \ldots m_10; n_1 n_2}^{(-4)} = \frac{21}{5} J_{n_1 m_1 \ldots m_5}^{(-2)} J_{n_2 m_6 \ldots m_10}^{(-2)} + J_{n_1 m_1 m_2}^{(-1)} J_{n_2 | m_3 \ldots m_10}^{(-3)}$$
Constraints: an intriguing link

Conserved E_{10} current $\mathcal{J} = n \mathcal{V} \mathcal{P} \mathcal{V}^{-1}$ (≡ Noether charge associated with global E_{10}):

\[
\mathcal{J} = \frac{1}{9!} J_{(-3)}^m n_{0} | m_{1} \ldots m_{10} \rangle \langle n_{1} \ldots n_{7} |
\]

\[
+ \frac{1}{6!} J_{(-2)}^m n_{0} | m_{1} \ldots m_{6} \rangle \langle n_{1} \ldots n_{6} |
\]

\[
+ \frac{1}{3!} J_{(-1)}^m n_{0} | m_{1} \ldots m_{6} \rangle \langle n_{1} \ldots n_{6} |
\]

Consider Sugawara-like (\(\propto \mathcal{J} \otimes \mathcal{J}\)) expressions [DKN, hep-th 0709.2691]

\[
\mathcal{L}_{(-6)}^{m_{1} \ldots m_{10} ; n_{0} | n_{1} \ldots n_{7}} = J_{(-3)}^{m_{0} | m_{1} \ldots m_{8}} J_{(-3)}^{m_{9} | m_{10} n_{1} \ldots n_{7}}
\]

\[
\mathcal{L}_{(-5)}^{m_{1} \ldots m_{10} ; n_{1} \ldots n_{5}} = J_{(-2)}^{n_{1} \ldots n_{4} m_{1} m_{2}} J_{(-3)}^{m_{3} \ldots m_{10}}
\]

\[
\mathcal{L}_{(-4)}^{m_{1} \ldots m_{10} ; n_{1} n_{2}} = \frac{21}{5} J_{(-2)}^{m_{1} \ldots m_{5}} J_{(-2)}^{n_{2} m_{6} \ldots m_{10}} + J_{(-1)}^{m_{1} m_{2} n_{1} \ldots n_{7}} J_{(-3)}^{n_{2} | m_{3} \ldots m_{10}}
\]

(with appropriate antisymmetrizations) to re-express canonical constraints:

\[
\mathcal{L}_{(-6)}^{m_{1} \ldots m_{10} ; n_{0} | n_{1} \ldots n_{7}} \propto \epsilon^{m_{1} \ldots m_{10}} \epsilon^{n_{1} \ldots n_{7} p q r} R_{pq r n_{0}} \quad \text{Bianchi (I)}
\]

\[
\mathcal{L}_{(-5)}^{m_{1} \ldots m_{10} ; n_{1} \ldots n_{5}} \propto \epsilon^{m_{1} \ldots m_{10}} \epsilon^{n_{1} \ldots n_{5} p_{1} \ldots p_{5}} D_{p_{1} F_{p_{2} \ldots p_{5}}} \quad \text{Bianchi (II)}
\]

\[
\mathcal{L}_{(-4)}^{m_{1} \ldots m_{10} ; n_{1} n_{2}} \propto \epsilon^{m_{1} \ldots m_{10}} \mathcal{M}^{0 n_{1} n_{2}} \quad \text{Gauss constraint}
\]

\[
\mathcal{L}_{(-3)}^{m_{1} \ldots m_{9}} \propto \epsilon^{m_{1} \ldots m_{9}} \mathcal{E}_{0 n} \quad \text{Momentum constraint}
\]
Summary

The ‘maximally extended’ hyperbolic KM algebra E_{10}
The ‘maximally extended’ hyperbolic KM algebra E_{10}

incorporates and unites many relations between maximal supergravity theories, generalizing known duality symmetries (including affine Geroch group)
Summary

The ‘maximally extended’ hyperbolic KM algebra E_{10}

- incorporates and unites many relations between maximal supergravity theories, generalizing known duality symmetries (including affine Geroch group)
- provides a concise algorithmic scheme via ‘geodesic’ σ-model and triangular (and level) decomposition.
Summary

The ‘maximally extended’ hyperbolic KM algebra E_{10}

- incorporates and unites many relations between maximal supergravity theories, generalizing known duality symmetries (including affine Geroch group)
- provides a concise algorithmic scheme via ‘geodesic’ σ-model and triangular (and level) decomposition.
- yields same information as maximal supersymmetry:
 - correct supermultiplets of SUGRA$_{11}$ and all $D < 11$ maximal supergravities
 - in particular: self-duality of 5-form field strength in IIB;
 - unique (bosonic) action, Chern–Simons couplings;
 - no cosmological constant in $D = 11$;
 - (partial) information about R^4, R^7, \ldots corrections?
Summary

The ‘maximally extended’ hyperbolic KM algebra E_{10}

- incorporates and unites many relations between maximal supergravity theories, generalizing known duality symmetries (including affine Geroch group)

- provides a concise algorithmic scheme via ‘geodesic’ σ-model and triangular (and level) decomposition.

- yields same information as maximal supersymmetry:
 - correct supermultiplets of SUGRA$_{11}$ and all $D < 11$ maximal supergravities
 - in particular: self-duality of 5-form field strength in IIB;
 - unique (bosonic) action, Chern–Simons couplings;
 - no cosmological constant in $D = 11$;
 - (partial) information about R^4, R^7, . . . corrections?

- Fermions correctly described by R symmetry $K(E_{10})$.

E_{10} and $K(E_{10})$: re-inventing M theory? – p.15/16
Outlook

New mechanism for (de-)emergence of space-time?

Space from Lie algebra

Time `operationally' from Wheeler-DeWitt equation

General covariance as an emergent property?

New perspectives for background independence?

Quantization: wave function of the universe as a modular form over $E_{10}(\mathbb{Z})$?

$[\text{Ganor, hep-th/9903110}].$

Any relation to zero tension limit of string theory?

Further exploration of these links could lead to important advances in physics and mathematics.

Thank you for your attention.
Outlook

New mechanism for \textit{(de-)}emergence of space-time?

- Space from Lie algebra
- Time ‘operationally’ from Wheeler-DeWitt equation
- General covariance as an \textit{emergent} property?

Ganor, hep-th/9903110.

Any relation to zero tension limit of string theory?

Further exploration of these links could lead to important advances in physics and mathematics.

Thank you for your attention.
Outlook

- New mechanism for \textit{(de-)emergence of space-time}?
 - Space from Lie algebra
 - Time ‘operationally’ from Wheeler-DeWitt equation
 - General covariance as an \textit{emergent} property?

\rightarrow \textit{new perspectives for background independence}?
Outlook

- New mechanism for (de-)emergence of space-time?
 - Space from Lie algebra
 - Time ‘operationally’ from Wheeler-DeWitt equation
 - General covariance as an emergent property?
- → new perspectives for background independence?
- Quantization: wave function of the universe as a modular form over $E_{10}(\mathbb{Z})$? [Ganor, hep-th/9903110].
Outlook

- New mechanism for *(de-)*emergence of *space-time*?
 - *Space* from Lie algebra
 - *Time* ‘operationally’ from Wheeler-DeWitt equation
 - General covariance as an *emergent* property?

- → new perspectives for *background independence*?

- Quantization: wave function of the universe as a *modular form* over $E_{10}(\mathbb{Z})$? [Ganor, hep-th/9903110].

- Any relation to *zero tension limit* of string theory?
Outlook

- New mechanism for (de-)emergence of space-time?
 - Space from Lie algebra
 - Time ‘operationally’ from Wheeler-DeWitt equation
 - General covariance as an emergent property?

→ new perspectives for background independence?

Quantization: wave function of the universe as a modular form over $E_{10}(\mathbb{Z})$? [Ganor, hep-th/9903110].

Any relation to zero tension limit of string theory?

Further exploration of these links could lead to important advances in physics and mathematics.
Outlook

- New mechanism for \emph{(de-)emergence of space-time}?
 - Space from Lie algebra
 - Time ‘operationally’ from Wheeler-DeWitt equation
 - General covariance as an \emph{emergent} property?

→ new perspectives for \emph{background independence}?

- Quantization: wave function of the universe as a \emph{modular form over $E_{10}(\mathbb{Z})$}? [Ganor, hep-th/9903110].

- Any relation to \emph{zero tension limit} of string theory?

- Further exploration of these links could lead to important advances in physics \emph{and} mathematics.

Thank you for your attention