A few comparisons between string theory and heavy-ion physics

Steve Gubser, Princeton University

Based largely on work with J. Friess, G. Michalogior-gakis, S. Pufu, and A. Yarom

Miami meeting, 12-16-07
Contents

1 Why $\mathcal{N} = 4$ super-Yang-Mills? 3
2 Heavy ion collisions at RHIC 6
3 Forces on a heavy quark 8
4 Diffusion wakes and sonic booms 14
5 Expanding plasmas and thermalization time 19
6 Comparing $\mathcal{N} = 4$ to the QGP 21
7 Outlook 26
1. Why $\mathcal{N} = 4$ super-Yang-Mills?

Why compare $\mathcal{N} = 4$ super-Yang-Mills theory to the quark-gluon plasma?

- Results to date suggest that there’s a chance it might work “fairly well.”
- $S_{\text{strong}} = \frac{3}{4}S_{\text{weak}}$ and $\eta/s = 1/4\pi$ are an encouraging start.
- It’s the simplest construction, so there’s less room for theoretical fudge.
- $\mathcal{N} = 4$ computations should provide a baseline of comparison for other gauge-string constructions.

How good agreement should we hope for?

- Can’t be perfect because $\mathcal{N} = 4$ isn’t QCD! When agreement is good, it could be for wrong reasons.
- $\mathcal{N} = 4$ has conformal symmetry and about $3 \times$ as many degrees of freedom as QCD.
- Confinement and χ_{SB} are missing both in $\mathcal{N} = 4$ and in the QGP.
- Within a factor of 2 for a variety of observables? Better for clever ratios?
What is $\mathcal{N} = 4$?

Field content:

\[A_\mu, \psi_1, \psi_2, \psi_3, \psi_4, X_1, X_2, X_3, X_4, X_5, X_6 \]

ψ_i and X_I are massless adjoints.

Lagrangian:

\[\mathcal{L} = -\frac{1}{2g_{YM}^2} \text{tr} F_{\mu\nu}^2 + \text{(superpartners)} \]

Key property: $\beta(g_{YM}) = 0$: conformal.

D-brane representation:

At finite temperature, a horizon forms, with $S \approx A/4G_N$ and $T = T_{\text{Hawking}}$:

AdS/CFT provides translation between gravitational and gauge theory descriptions.
Most AdS/CFT calculations rely on expansions in large $N = 3$ (number of colors) and ’t Hooft coupling $\lambda = g^2_{YM} N = 3g_{YM}^2 = 12\pi \alpha_{SYM} \sim 12\pi \alpha_s \sim 6\pi \approx 19$.

$1/N$ corrections \rightarrow quantum gravity corrections in AdS_5.

$1/\lambda$ corrections \rightarrow classical string theory corrections to GR.

Taking figure 1 as a guide, strong coupling methods might fail for $\lambda \approx 8$; perturbative methods might fail for $\lambda \approx 1$; and HTL methods might fail for $\lambda \gtrsim 4$.

![Figure 1: HTL (green) calculations of entropy in QCD and $\mathcal{N} = 4$ [Blaizot et al. 2006]. The Padé curve agrees with best estimates at large and small ’t Hooft coupling $\lambda = g^2_{YM} N$.](image-url)
2. **Heavy ion collisions at RHIC**

- RHIC collides gold nuclei moving with $\gamma \approx 100$, so $E_{\text{tot}} \approx 39$ TeV.
- About 7500 particles come out, $\gg 197$ nucleons per gold nucleus.
- The nuclear matter is probably thermal from about 0.6 fm/c to about 6 fm/c. (i.e. until $t = 10^{-23}$ s).
- A typical temperature is 250 MeV, above the confinement and χ_{SB} transition at $T_c \approx 170$ MeV.
- The QGP is probably strongly coupled, as evidenced by $\eta/s \ll 1$.
Introduction to jet-quenching

A standard single-particle measure of energy loss in the QGP is the “nuclear modification factor,”

\[R_{AA} \equiv \frac{dN(\text{gold-gold})/dp_Td\eta}{\langle N_{\text{binary}} \rangle dN(\text{proton-proton})/dp_Td\eta}. \]

(1)

\(\eta \) is the “pseudo-rapidity,” \(\tanh \eta \equiv \cos \theta \).

Small \(R_{AA} \) means that hard partons dump energy very quickly as they plow through the QGP.

\(\Delta E = 10 \ \text{GeV} \) can occur in about \(1 \ \text{fm} \).

Nuclear modification factor \(R_{AA} \) for photons and hadrons in 0 to 10% central gold-gold collisions. From [Muller and Nagle 2006].
3. Forces on a heavy quark

A heavy external quark moving at speed v through thermal plasma of $\mathcal{N} = 4$ experiences a drag force [Herzog et al. 2006; Gubser 2006a]

$$\frac{dp}{dt} = -\frac{\pi \sqrt{\lambda}}{2} T^2 \frac{v}{\sqrt{1 - v^2}} \approx -\frac{\pi \sqrt{\lambda}}{2} T^2 \frac{p}{m}. \quad (2)$$

(2) arises in a simple way: a fundamental string trails out behind the quark into AdS_5-Schwarzschild, pulling back upon it. Scaling can be understood simply:

- $dp/dt \propto p/m$ is a surprise: Lorentz enhancement over $J \cdot A$ expectations.
A few comparisons, Gubser, Miami 2007

3 Forces on a heavy quark

• \(dp/dt \propto \sqrt{\lambda} \) because this is how string tension scales: \(L^2/\alpha' = \sqrt{\lambda} \) where \(L \) is radius of \(AdS_5 \).

Drag force is not the whole story: in a Langevin description [Casalderrey-Solana and Teaney 2006; Gubser 2006b; Casalderrey-Solana and Teaney 2007]

\[
\frac{dp}{dt} = -\eta p + F(t) \quad \eta = \frac{\pi \sqrt{\lambda} T^2}{2m}
\]

where \(F \) is a stochastic force: if \(p \) is in the \(\hat{1} \) direction, then

\[
\langle F_1(t_1)F_1(t_2) \rangle \approx \kappa_L \delta(t_1 - t_2) , \quad \kappa_L = \pi \sqrt{\lambda} \frac{T^3}{(1 - v^2)^{5/4}}
\]

\[
\langle F_i(t_1)F_j(t_2) \rangle \approx \kappa_T \delta_{ij} \delta(t_1 - t_2) , \quad \kappa_T = \pi \sqrt{\lambda} \frac{T^3}{\sqrt{4} \sqrt{1 - v^2}}
\]

where \(i, j = 2, 3 \). Sometimes I prefer to quote

\[
\hat{q}_T \equiv \frac{\langle p_{\perp}^2 \rangle}{\lambda} = \frac{2\kappa_T}{v} = 2\pi \sqrt{\lambda} \frac{T^3}{v^4 \sqrt{1 - v^2}} ;
\]

however this definition of \(\hat{q}_T \) differs from \(\hat{q} \) in [Liu et al. 2006].
String theory value for κ_L exceeds Einstein relation except near $v = 0$:

$$\kappa_L = \frac{1}{(1 - v^2)^{3/4}} 2T E \eta,$$ \hspace{1cm} (6)

hinting that Langevin description doesn’t capture all the physics.

Another such hint comes from a scaling form for force correlators:

$$\langle F_i(t_1) F_j(t_2) \rangle = \delta_{ij} G_T(t_2 - t_1)$$

$$G_T(t) = \pi T^3 \frac{\sqrt{\lambda}}{\sqrt[4]{1 - v^2}} g_T(\ell)$$

where $\ell \equiv \sqrt[4]{1 - v^2} \pi T t$ \hspace{1cm} (7)

The take-away message: correlation time in $\vec{F}(t)$ diverges as $1/\sqrt[4]{1 - v^2}$.

The force correlator as a function of dimensionless time. The red curve is $g_T(\ell)$; other curves are estimates and corrections. From [Gubser 2006b].
The way one gets at \vec{F} in string theory is by noting that the trailing string worldsheet has a causal horizon at $y = y_v$. Consider a point on the string at fixed height y in AdS_5-Schwarzschild:

$$ds_5^2 = \frac{L^2 \pi^2 T^2}{y^2} \left[-(1 - y^4) dt^2 + dx^2 + \frac{1}{\pi^2 T^2} \frac{dy^2}{1 - y^4} \right]. \quad (8)$$

- $d\tau^2 > 0$ if $y > y_v \equiv \sqrt{1 - v^2}$: “outside” the worldsheet black hole.
- $d\tau^2 < 0$ if $y < y_v$: “inside” the worldsheet black hole.

Something roughly like Hawking radiation must emanate from the worldsheet horizon, leading to stochastic $\vec{F}(t)$. Actual computations directly access $\langle F_i(t_1) F_j(t_2) \rangle$.
Naive comparison with data

\[\eta = \frac{\pi \sqrt{\lambda T^2}}{2m} \Rightarrow \]

\[2\pi T D = \frac{2\pi T^2}{m\eta} = \frac{4}{\sqrt{\lambda}} \]

which is too small if \(\lambda \sim 19 \), corresponding to \(\alpha_s = 1/2 \).

In other words,

\[t_{\text{charm}} = \frac{1}{\eta} \sim 0.6 \text{ fm} \]

is too small for \(R_{AA} \). But see section 6...

Figure 4: \(R_{AA} \) and \(v_2 \) for heavy quarks. \(p_T \) is for a non-photonic electron. From [Adare et al. 2006].
It was recently suggested [Horowitz and Gyulassy 2007] that a distinctive difference between pQCD and AdS/CFT predictions from RHIC to LHC energies comes from

\[R_{AA}^{cb} \equiv \frac{R_{AA}^{b}}{R_{AA}^{c}} \sim \left\{ \frac{t_{\text{bottom}}}{t_{\text{charm}}} \approx \frac{m_{\text{charm}}}{m_{\text{bottom}}} \quad \text{for AdS/CFT} \right\} \]

\[1 - \frac{p_{cb}}{p_T} \quad \text{for pQCD}, \quad p_{cb} \propto \hat{q} L^2 \]

Figure 5: pQCD predictions for \(R_{AA}^{cb} \) separate cleanly from AdS/CFT because assumptions about initial conditions cancel out. But beware uncertainty on the limits of validity of AdS/CFT.
4. Diffusion wakes and sonic booms

“Pull-back” from the string is a five-dimensional metaphor for momentum transfer from the quark to the thermal bath. Can we be more precise? Yes: [Friess et al. 2006a; Yarom 2007; Gubser et al. 2007b; Chesler and Yaffe 2007; Gubser et al. 2007a]....

- Tree-level graviton propagation from string to boundary tells us $\langle T_{mn} \rangle$ in the gauge theory.

Figure 6: In blue: the trailing string of an external quark. The dashed line shows classical propagation of a graviton from the string to the boundary, where its behavior can be translated into the stress-energy tensor $\langle T_{mn} \rangle$ of the boundary gauge theory [Friess et al. 2006a].
• Easiest to solve linearized Einstein’s equations via a co-moving ansatz:

\[h_{mn}(t, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} e^{i k_1 (x_1 - vt) + i k_2 x_2 + i k_3 x_3} h_{mn}(\vec{k}). \]

(12)

• Prefer to render all quantities dimensionless with factors of \(\pi T \), e.g.

\[\vec{K} = \frac{\vec{k}}{\pi T}, \quad \vec{X} = \pi T \vec{x}. \]

(13)

• Angle \(\theta \) between \(\vec{v} \) and \(\vec{k} \) is roughly \(\pi - \Delta \phi \), where \(\Delta \phi \) is opening angle in dihadron correlators.

\[K_1 = K \cos \theta, \quad K_p = K \sin \theta, \quad X_1 = X \cos \theta, \quad X_p = X \sin \theta. \]

(14)

• Rescale energy density and subtract off thermal bath as well as vacuum field of the quark:

\[E(\vec{X}) \equiv \frac{\sqrt{1 - v^2}}{(\pi T)^4 \sqrt{\lambda}} \left\langle T^{00}(0, \vec{x}) - T_{\text{bath}}^{00} - T_{\text{Coulomb}}^{00}(0, \vec{x}) \right\rangle \]

(15)

and likewise define dimensionless Poynting vector \(\vec{S} \) in terms of \(T^{0i} \).
Figure 7: For $T \approx 318$ MeV, $|\vec{X}| = 1$ is a distance 0.2 fm from the quark. From [Gubser et al. 2007a].
Some **good** news, some **bad**:

- Mach angle is too small to fit data well: \(c_s = 1/\sqrt{3} \), so \(\theta_M \approx 55^\circ \), wanted 70°.
- We get \(E \) and \(\vec{S} \) at *all* scales, from 0.01 fm to 30 fm, from one (big) computation with no free parameters except \(v \).
- There’s no RG flow, so comparisons with QCD below 0.1 fm are more fraught than usual.
- Medium is infinite and static.
- There is a strong Mach cone. Match to linearized hydro with \(\eta/s = 1/4\pi \) is great for \(|\vec{X}| \gtrsim 2\) fm.
- Energy is lost to sound modes almost *twice* as fast as the *total* power loss.
- Diffusion wake is also strong.
- **Remember**, this is for a heavy quark as the away-side parton!

Accounting depends on energy flowing *in toward the quark* in diffusion wake:

\[
\text{(sound)} : \text{(diffusion)} : \text{(total)} = 1 + v^2 : -1 : v^2
\]

The scaling (16) is fairly universal [Gubser and Yarom 2007].
Comparison with data requires hadronization...

...and earlier hydro studies [Chaudhuri and Heinz 2006; Casalderrey-Solana et al. 0200] suggest that it’s uphill work, even if diffusion wake is suppressed by hand.

Counter-clockwise from lower-left: PHENIX [Jia 2007], STAR [Adams et al. 2005], hydro w/o diffusion wake \(\frac{dE}{dx} = 10T^2 \) and various \(p_T \) [Casalderrey-Solana et al. 0200].
5. Expanding plasmas and thermalization time

Finding gravity dual of a RHIC collision is hard work, but a special type of spherically symmetric radial flow is easy: the “conformal soliton,”

\[
\rho(t, r) = \rho_{\text{peak}} \frac{3L^4 + 6r^2L^2 + 3r^4 + 6t^2L^2 + 10r^2t^2 + 3t^4}{3(L^4 + 2r^2L^2 + r^4 + 2t^2L^2 - 2r^2t^2 + t^4)^3},
\]

which is conformal to a static plasma on \(S^3 \). (Obvious going the other way.)

No shear, no entropy production. But if perturbed, it re-equilibrates. How fast?

There’s no scale in a CFT; must therefore set \(T_{\text{peak}} \sim 300 \text{ MeV/fm}^3 \) and \(L \sim 7 \text{ fm} \) to “compare” with a RHIC collision.
The \(e \)-folding time for the slowest non-hydrodynamical mode is

\[
\tau_{e\text{-fold}} \approx 1/8.6T_{\text{peak}}.
\] (18)

Extrapolating to RHIC flows, where initial state is highly anisotropic, a rough estimate of thermalization / isotropization time is

\[
\tau_{\text{therm}} \sim 4\tau_{e\text{-fold}} \approx 0.3 \text{ fm}/c.
\] (19)

One arrives at (18) from studying linearized perturbations of the finite-mass black hole dual to the conformal soliton [Friess et al. 2006b].

Perhaps, with sufficient effort, finite-mass black holes in \(AdS_5 \) could be collided: dual to collisions of boosted blobs of QGP.
6. Comparing $\mathcal{N} = 4$ to the QGP

Consider two schemes for making comparisons:

\begin{align*}
\text{obvious:} & \quad T_{SYM} = T_{QCD} = 250 \text{ MeV} \quad g_{YM}^2 N = 12\pi \alpha_s = 6\pi \approx 19 \\
\text{alternative:} & \quad 3^{1/4}T_{SYM} = T_{QCD} = 250 \text{ MeV} \quad g_{YM}^2 N = 5.5. \quad (20)
\end{align*}

“Obvious” doesn’t need much justification: $\alpha_s = 1/2$ is a widespread rule-of-thumb estimate in the specified temperature range, and $g_{YM}^2 N = 12\pi \alpha_s$ corresponds to $g_{YM} = g_s$.

I arrived at “alternative” by comparing string predictions for $q\bar{q}$ to lattice computations. Lattice people define an effective coupling:

$$
\alpha_{qq}(r, T) \equiv \frac{3}{4} r^2 \frac{\partial F_{qq}}{\partial r}. \quad (21)
$$

Analogous quantity in string theory receives contributions from two configurations, shown in figure 8.

- Only the U-shape is fully understood, and I include only it in later plots (figure 9).
Figure 8: Two string configurations contributing to $\alpha_{\text{SYM}}(r, T)$.

- There are attractive interactions between the anti-parallel strings that dominate the $\tilde{r} > \tilde{r}_*$ regime, and recent work [Bak et al. 2007] has endeavored to quantify them and compare to lattice QCD.

Simplest approximation to U-curve contribution is zero temperature result:

$$\alpha_{\text{SYM}}(T = 0) \equiv \frac{3}{4} r^2 \frac{\partial V_{q\bar{q}}}{\partial r} = \sqrt{g_{YM}^2 N} \frac{3\pi^2}{\Gamma(1/4)^4}.$$ (22)

$T \neq 0$ results in a bit of Debye screening.

- To fix $g_{YM}^2 N \approx 5.5$, compare to lattice at largest r where U-shape dominates. Overlap of lattice and SYM is a bit better when one compares at fixed energy density rather than fixed temperature.
Figure 9: Static quark force for $\mathcal{N} = 4$ SYM (yellow band) versus $N_f = 2$ lattice results (colored dots from [Kaczmarek and Zantow 2005]. If $T_c = 170$ MeV, then $T = 209$ MeV (red dots), 233 MeV (green dots), 255 MeV (blue dots). Dark center line in yellow is $g_{YM}^2 N = 5.5$. Dashed grey is from Cornell potential. The choice $T_{SYM} = 190$ MeV amounts to fixed energy density comparison with QCD. From [Gubser 2006c].

- Makes sense: more matter, faster thermal screening.
- $\epsilon_{SYM} = \epsilon_{QCD}$ means $T_{SYM} \approx T_{QCD}/3^{1/4}$.
- Match between SYM and lattice here is conspicuously imperfect, but I wanted some comparison where leading-order result on SYM side involves $g_{YM}^2 N$.
- An alternative perspective can be found in [Sin and Zahed 2007].
Table 1: A few comparisons between $\mathcal{N} = 4$ SYM and the QGP.

QGP numbers are representative ranges. $T = 250$ MeV unless otherwise noted. $T_c = 170$ MeV, $m_c = 1.4$ GeV assumed.

<table>
<thead>
<tr>
<th>quantity</th>
<th>formula</th>
<th>obvious</th>
<th>alternative</th>
<th>QGP</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>s/s_{free} [1,2]</td>
<td>$\frac{3}{4} + \frac{45\zeta(3)}{32\lambda^{3/2}}$</td>
<td>0.77</td>
<td>0.88</td>
<td>0.6 – 0.9</td>
<td>lattice e.g. [3] HTL [4,5]</td>
</tr>
<tr>
<td>η/s [6,7]</td>
<td>$\frac{1}{4\pi} + \frac{135\zeta(3)}{32\pi\lambda^{3/2}}$</td>
<td>0.10</td>
<td>0.2</td>
<td>0 – 0.3</td>
<td></td>
</tr>
<tr>
<td>τ_{therm} [8]</td>
<td>$\frac{1}{2.2T_{\text{peak}}}$</td>
<td>0.3 fm</td>
<td>0.4 fm</td>
<td>0.6 – 1.0 fm</td>
<td>Also [9,10] $T_{\text{peak}}=300$ MeV</td>
</tr>
<tr>
<td>t_{charm} [11,12,13]</td>
<td>$\frac{2m_c}{\pi T^2 \sqrt{\lambda}}$</td>
<td>0.65 fm</td>
<td>2.1 fm</td>
<td>3 – 6 fm</td>
<td>[14,15,16] hadronization b-tagging</td>
</tr>
<tr>
<td>\hat{q} [17]</td>
<td>$\frac{\pi^{3/2} \Gamma(3/4) \sqrt{\lambda T^3}}{\Gamma(5/4)} \frac{\sqrt{\lambda \gamma T^3}}{\nu}$</td>
<td>2.6 GeV</td>
<td>0.61 GeV</td>
<td>1 – 15 GeV</td>
<td>[20] for QGP \hat{q}_T for charm @ $E=10$ GeV</td>
</tr>
<tr>
<td>\hat{q}_T [18,19]</td>
<td>$\frac{\pi^{3/2} \Gamma(3/4) \sqrt{\lambda T^3}}{\Gamma(5/4)} \frac{\sqrt{\lambda \gamma T^3}}{\nu}$</td>
<td>5.8 GeV</td>
<td>1.4 GeV</td>
<td>1 – 15 GeV</td>
<td></td>
</tr>
<tr>
<td>m_D [21]</td>
<td>$(10.6 - \frac{6.7}{\lambda^{3/2}}) T$</td>
<td>3.6 GeV</td>
<td>2.6 GeV</td>
<td>~ 1.9 GeV</td>
<td>lattice [22] $T=340$ MeV 6.7 conjectural</td>
</tr>
</tbody>
</table>
References from the comparison table

[8] Friess, Gubser, Michalogiorgakis, and Pufu 2006b
[9] Lublinsky and Shuryak 2007
[12] Casalderrey-Solana and Teaney 2006
[14] van Hees and Rapp 2005
[16] Adare et al. 2006
[17] Liu, Rajagopal, and Wiedemann 2006
[18] Gubser 2006b
[21] Bak, Karch, and Yaffe 2007
7. Outlook

There are a handful of interesting comparisons between string theory and the QGP produced at RHIC. Maybe more will come.

- Quantitative comparisons aren’t all spot-on, but possibly within a factor of 2 if one compares at fixed energy density.

- It would be helpful if theorists could:
 1. Find a gravity dual of QCD that works at finite temperature and has minimal theoretical fudge.
 2. Get better control of α' corrections.
 3. Bridge better to phenomenological studies, e.g. by including hadronization.

- It would be helpful if experimentalists could:
 1. Constrain $\Delta \phi \approx \pi$ region of di-hadron correlators in a way I can compare better between STAR and PHENIX. Is the diffusion wake ruled out?
 2. Tag b’s and c’s. How about 2pt function of HQ and hard associated hadron?
 3. Keep running: some heavy-quark measurements look luminosity-limited, e.g. centrality-specific v_2 for charm.
More thoughts for the future

- How good is the match of AdS/CFT to hydrodynamics beyond linearized approximation? See e.g. the figure below from [Noronha et al. 2007]. Can AdS/CFT elucidate turbulence and/or high-gradient fluid flows?
- When is AdS/CFT going beyond hydro? Is it more to RHIC physics than a minimal interpolation between CFT and low-viscosity hydro?

- Thermalization time is important to heavy-ion physics, and existing treatments (including the one I discussed) are not very satisfactory.

- Need to consider stochastic dynamics in violation of Einstein relation, or with a composite quark-string system. Inclusion of fluctuations in current AdS/CFT treatments of hard probes seems feeble.
• Diffusion wake or no diffusion wake? Is this affected by fluctuations? Turbulence? Expanding medium? Is the wake related to near side ridge and/or directed baryon excess, as Jacak has speculated? Figure from [Wong 2007].

![Graph](image)

• **The good news**: AdS/CFT has made string theory a player in the phenomenology of a modern, data-rich, experimental field.

• **However**: Playing and winning are not necessarily the same thing.
References

